Advertisement

Two Results on Discontinuous Input Processing

  • Vojtěch VorelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

First, we show that universality and other properties of general jumping finite automata are undecidable, which answers questions asked by Meduna and Zemek in 2012 [12]. Second, we close a study started by Černo and Mráz in 2010 [3] by proving that a clearing restarting automaton using contexts of length two can accept a binary non-context-free language.

References

  1. 1.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Small size insertion and deletion systems. In: Martin-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 459–524. Imperial College Press (2010)Google Scholar
  2. 2.
    Černo, P.: Clearing restarting automata and grammatical inference. In: Heinz, J., Colin de la Higuera, T.O. (eds.) Proceedings of the Eleventh International Conference on Grammatical Inference. JMLR Workshop and Conference Proceedings, vol. 21, pp. 54–68 (2012)Google Scholar
  3. 3.
    Černo, P., Mráz, F.: Clearing restarting automata. Fund. Inf. 104(1), 17–54 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theoret. Comput. Sci. 27(3), 311–332 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fernau, H., Paramasivan, M., Schmid, M., Vorel, V.: Characterization andcomplexity results on jumping finite automata. Accepted to Theoretical Computer Science (2015). http://arxiv.org/abs/1512.00482
  6. 6.
    Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: characterizations and complexity. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 89–101. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley (2003)Google Scholar
  9. 9.
    Ito, M., Kari, L., Thierrin, G.: Insertion and deletion closure of languages. Theoret. Comput. Sci. 183(1), 3–19 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Marcus, M., Păun, G.: Regulated Galiukschov semicontextual grammars. Kybernetika 26(4), 316–326 (1990)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23(7), 1555–1578 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Meduna, A., Zemek, P.: Chapter 17 Jumping Finite Automata. In: Regulated Grammars and Automata, pp. 567–585. Springer, New York (2014)Google Scholar
  14. 14.
    Mráz, F., Plátek, M., Vogel, J.: Restarting automata with rewriting. In: Král, J., Bartosek, M., Jeffery, K. (eds.) SOFSEM 1996. LNCS, vol. 1175, pp. 401–408. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Păun, G.: Two theorems about Galiukschov semicontextual languages. Kybernetika 21(5), 360–365 (1985)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Păun, G., Rozenberg, G., Salomaa, A.: Insertion-deletion systems. In: DNA Computing: New Computing Paradigms. Texts in Theoretical Computer Science, pp. 187–215. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Vorel, V.: On basic properties of jumping finite automata. Int. J. Found. Comput. Sci., conditionally accepted in 2015. http://arxiv.org/abs/1511.08396

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations