Advertisement

Unary Self-verifying Symmetric Difference Automata

  • Laurette Marais
  • Lynette van ZijlEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

We investigate self-verifying nondeterministic finite automata, in the case of unary symmetric difference nondeterministic finite automata (SV-XNFA). We show that there is a family of languages \(\mathcal {L}_{n\ge 2}\) which can always be represented non-trivially by unary SV-XNFA. We also consider the descriptional complexity of unary SV-XNFA, giving an upper and lower bound for state complexity.

References

  1. 1.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)zbMATHGoogle Scholar
  2. 2.
    Van Zijl, L.: Generalized nondeterminism and the succinct representation of regular languages. Ph.D. thesis, University of Stellenbosch (1997). http://www.cs.sun.ac.za/~lvzijl/publications/boek.ps.gz
  3. 3.
    Van der Merwe, B., Tamm, H., Van Zijl, L.: Minimal DFA for symmetric difference NFA. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 307–318. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Assent, I., Seibert, S.: An upper bound for transforming self-verifying automata into deterministic ones. RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications 41(3), 261–265 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hromkovič, J., Schnitger, G.: On the power of Las Vegas II. Two-way finite automata. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 433–442. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deterministic automata. Inf. Comput. 209(3), 528–535 (2011). Special Issue: 3rd International Conference on Language and Automata Theory and Applications (LATA 2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Vuillemin, J., Gama, N.: Compact normal form for regular languages as Xor automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Stone, H.S.: Discrete Mathematical Structures and their Applications. Science Research Associates, Chicago (1973)zbMATHGoogle Scholar
  9. 9.
    Dornhoff, L.L., Hohn, F.E.: Applied Modern Algebra. Macmillan Publishing Co., Inc., Collier Macmillan Publishers, New York, London (1978)zbMATHGoogle Scholar
  10. 10.
    Geffert, V., Pighizzini, G.: Pairs of complementary unary languages with “balanced” nondeterministic automata. Algorithmica 63(3), 571–587 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceStellenbosch UniversityStellenboschSouth Africa
  2. 2.Meraka Institute, CSIRPretoriaSouth Africa

Personalised recommendations