Minimal and Reduced Reversible Automata

  • Giovanna J. Lavado
  • Giovanni PighizziniEmail author
  • Luca Prigioniero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)


A condition characterizing the class of regular languages which have several nonisomorphic minimal reversible automata is presented. The condition concerns the structure of the minimum automaton accepting the language under consideration. It is also observed that there exist reduced reversible automata which are not minimal, in the sense that all the automata obtained by merging some of their equivalent states are irreversible. Furthermore, it is proved that if the minimum deterministic automaton accepting a reversible language contains a loop in the “irreversible part” then it is always possible to construct infinitely many reduced reversible automata accepting such a language.


Regular Language Transition Graph Computational Device Deterministic Finite Automaton Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  5. 5.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS, pp. 66–75. IEEE Computer Society (1997)Google Scholar
  6. 6.
    Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 83–98. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Kutrib, M.: Reversible and irreversible computations of deterministic finite-state devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015, Part I. LNCS, vol. 9234, pp. 38–52. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lange, K., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lombardy, S.: On the construction of reversible automata for reversible languages. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Giovanna J. Lavado
    • 1
  • Giovanni Pighizzini
    • 1
    Email author
  • Luca Prigioniero
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations