Advertisement

The Complexity of Languages Resulting from the Concatenation Operation

  • Galina JiráskováEmail author
  • Alexander Szabari
  • Juraj Šebej
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

We prove that for all mn, and \(\alpha \) with \(1 \le \alpha \le f(m,n)\), where f(mn) is the state complexity of the concatenation operation, there exist a minimal m-state DFA A and a minimal n-state DFA B, both defined over an alphabet \(\varSigma \) with \(|\varSigma |\le 2n+4\), such that the minimal DFA for the language L(A)L(B) has exactly \(\alpha \) states. This improves a similar result in the literature that uses an exponential alphabet.

References

  1. 1.
    Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205, 1652–1670 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Holzer, M., Jakobi, S., Kutrib, M.: The magic number problem for subregular language families. Internat. J. Found. Comput. Sci. 23, 115–131 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory and Computation. Addison-Wesley Publishing Company, Reading (1979)Google Scholar
  4. 4.
    Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to \(n\)-state NFAs. Theoret. Comput. Sci. 237, 485–494 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need \(2^n-\alpha \) deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Jirásková, G.: Concatenation of regular languages and descriptional complexity. Theory Comput. Syst. 49, 306–318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput. Sci. 22, 331–344 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-free languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 226–237. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)zbMATHGoogle Scholar
  12. 12.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114–129 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997)zbMATHGoogle Scholar
  14. 14.
    Šebej, J.: Reversal on regular languages and descriptional complexity. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 265–276. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Yu, S.: Regular languages, Chap. 2. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zijl, L.: Magic numbers for symmetric difference NFAs. Internat. J. Found. Comput. Sci. 16, 1027 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 136–147. Springer, Heidelberg (2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Galina Jirásková
    • 1
    Email author
  • Alexander Szabari
    • 2
  • Juraj Šebej
    • 2
  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia
  2. 2.Faculty of Science, Institute of Computer ScienceP.J. Šafárik UniversityKošiceSlovakia

Personalised recommendations