Descriptional Complexity of Bounded Regular Languages

  • Andrea Herrmann
  • Martin Kutrib
  • Andreas MalcherEmail author
  • Matthias Wendlandt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)


We investigate the descriptional complexity of the subregular language classes of (strongly) bounded regular languages. In the first part, we study the costs for the determinization of nondeterministic finite automata accepting strongly bounded regular languages. The upper bound for the costs is larger than the costs for determinizing unary regular languages, but lower than the costs for determinizing arbitrary regular languages. In the second part, we study for (strongly) bounded languages the deterministic operational state complexity of the Boolean operations as well as the operations reversal, concatenation, and iteration. In detail, we present upper and lower bounds and we develop for the proof of the lower bounds a tool that exploits the number of different colorings of cycles occurring in deterministic finite automata accepting bounded languages.


  1. 1.
    Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2), 149–158 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chrobak, M.: Errata to “Finite automata and unary languages”. Theoret. Comput. Sci. 302, 497–498 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Erickson, M.J.: Introduction to Combinatorics. Wiley, New York (1996)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. CoRR abs/1509.03254 (2015).
  7. 7.
    Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Amer. Math. Soc. 17(5), 1043–1049 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw Hill, New York (1966)zbMATHGoogle Scholar
  9. 9.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  11. 11.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ibarra, O.H., Ravikumar, B.: On bounded languages and reversal-bounded automata. Inf. Comput. 246, 30–42 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6), 1291–1306 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Leiss, E.L.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Malcher, A., Pighizzini, G.: Descriptional complexity of bounded context-free languages. Inf. Comput. 227, 1–20 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: SWAT 1971, pp. 188–191. IEEE (1971)Google Scholar
  17. 17.
    Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13, 145–159 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary alphabets. J. Autom. Lang. Comb. 2, 177–186 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Valiant, L.G.: Regularity and related problems for deterministic pushdown automata. J. ACM 22, 1–10 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Andrea Herrmann
    • 1
  • Martin Kutrib
    • 1
  • Andreas Malcher
    • 1
    Email author
  • Matthias Wendlandt
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations