Skip to main content

EMPC Systems: Computational Efficiency and Real-Time Implementation

  • Chapter
  • First Online:
Economic Model Predictive Control

Part of the book series: Advances in Industrial Control ((AIC))

  • 2249 Accesses

Abstract

In this chapter, three economic model predictive control (EMPC) schemes are presented that broadly address the issues of computational efficiency and real-time implementation. In the first section, a composite control structure featuring EMPC is presented for two-time-scale systems described by a class of nonlinear singularly perturbed systems. Owing to the fact that the dynamic models that describe such systems are inherently ill-conditioned, a composite control structure is well-conditioned which has computational advantages over the use of one centralized model-based controller formulated with the ill-conditioned model. The second section presents an application study of several distributed EMPC designs. For the chemical process example analyzed, similar closed-loop economic performance is achieved under distributed EMPC relative to that achieved under centralized EMPC. The last section presents a real-time implementation strategy for Lyapunov-based EMPC (LEMPC). The real-time LEMPC addresses potentially unknown and time-varying computational time for control action calculation. Closed-loop stability under this real-time LEMPC strategy is rigorously analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kokotovic P, Khalil HK, O’Reilly J (1999) Singular perturbation methods in control: analysis and design, vol. 25. SIAM

    Google Scholar 

  2. Christofides PD, Daoutidis P (1996) Feedback control of two-time-scale nonlinear systems. Int J Control 63:965–994

    Article  MathSciNet  MATH  Google Scholar 

  3. Kumar A, Daoutidis P (2002) Nonlinear dynamics and control of process systems with recycle. J Process Control 12:475–484

    Article  Google Scholar 

  4. Baldea M, Daoutidis P (2012) Control of integrated chemical process systems using underlying DAE models. In: Biegler LT, Campbell SL, Mehrmann V (eds) Control and optimization with differential-algebraic constraints. SIAM, pp 273–291

    Google Scholar 

  5. Chen X, Heidarinejad M, Liu J, Christofides PD (2012) Composite fast-slow MPC design for nonlinear singularly perturbed systems. AIChE J 58:1802–1811

    Article  Google Scholar 

  6. Chen X, Heidarinejad M, Liu J, Muñoz de la Peña D, Christofides PD (2011) Model predictive control of nonlinear singularly perturbed systems: application to a large-scale process network. J Process Control 21:1296–1305

    Google Scholar 

  7. Massera JL (1956) Contributions to stability theory. Ann Math 64:182–206

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin Y, Sontag E, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34:124–160

    Article  MathSciNet  MATH  Google Scholar 

  9. Khalil HK (2002) Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  10. Muñoz de la Peña D, Christofides PD (2008) Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Trans Autom Control 53:2076–2089

    Google Scholar 

  11. Christofides P, Teel A (1996) Singular perturbations and input-to-state stability. IEEE Trans Autom Control 41:1645–1650

    Article  MathSciNet  MATH  Google Scholar 

  12. Christofides PD, Scattolini R, Muñoz de la Peña D, Liu J (2013) Distributed model predictive control: a tutorial review and future research directions. Comput Chem Eng 51:21–41

    Google Scholar 

  13. Liu J, Muñoz de la Peña D, Christofides PD (2009) Distributed model predictive control of nonlinear process systems. AIChE J 55:1171–1184

    Google Scholar 

  14. Liu J, Chen X, Muñoz de la Peña D, Christofides PD (2010) Sequential and iterative architectures for distributed model predictive control of nonlinear process systems. AIChE J 56:2137–2149

    Google Scholar 

  15. Scattolini R (2009) Architectures for distributed and hierarchical model predictive control—a review. J Process Control 19:723–731

    Article  Google Scholar 

  16. Müller MA, Allgöwer F (2014) Distributed economic MPC: a framework for cooperative control problems. In: Proceedings of the 19th world congress of the international federation of automatic control. Cape Town, South Africa, pp 1029–1034

    Google Scholar 

  17. Driessen PAA, Hermans RM, van den Bosch PPJ (2012) Distributed economic model predictive control of networks in competitive environments. In: Proceedings of the 51st IEEE conference on decision and control, Maui, HI, pp 266–271

    Google Scholar 

  18. Chen X, Heidarinejad M, Liu J, Christofides PD (2012) Distributed economic MPC: application to a nonlinear chemical process network. J Process Control 22:689–699

    Article  Google Scholar 

  19. Lee J, Angeli D (2012) Distributed cooperative nonlinear economic MPC. In: Proceedings of the 20th international symposium on mathematical theory of networks and systems. Melbourne, Australia

    Google Scholar 

  20. Özgülşen F, Adomaitis RA, Çinar A (1992) A numerical method for determining optimal parameter values in forced periodic operation. Chem Eng Sci 47:605–613

    Article  Google Scholar 

  21. Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57

    Article  MathSciNet  MATH  Google Scholar 

  22. Ellis M, Christofides PD (2014) Optimal time-varying operation of nonlinear process systems with economic model predictive control. Ind Eng Chem Res 53:4991–5001

    Article  Google Scholar 

  23. Ronco E, Arsan T, Gawthrop PJ (1999) Open-loop intermittent feedback control: practical continuous-time GPC. IEE Proc—Control Theory Appl 146:426–434

    Article  Google Scholar 

  24. Chen WH, Ballance DJ, O’Reilly J (2000) Model predictive control of nonlinear systems: computational burden and stability. IEE Proc—Control Theory Appl 147:387–394

    Article  Google Scholar 

  25. Findeisen R, Allgöwer F (2004) Computational delay in nonlinear model predictive control. In: Proceedings of the IFAC international symposium of advanced control of chemical processes, Hong Kong, pp 427–432

    Google Scholar 

  26. Scokaert POM, Mayne DQ, Rawlings JB (1999) Suboptimal model predictive control (feasibility implies stability). IEEE Trans Autom Control 44:648–654

    Article  MathSciNet  MATH  Google Scholar 

  27. Würth L, Hannemann R, Marquardt W (2009) Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization. J Process Control 19:1277–1288

    Article  Google Scholar 

  28. Zavala VM, Biegler LT (2009) The advanced-step NMPC controller: optimality, stability and robustness. Automatica 45:86–93

    Article  MathSciNet  MATH  Google Scholar 

  29. Biegler LT, Yang X, Fischer GAG (2015) Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization. J Process Control 30:104–116

    Article  Google Scholar 

  30. Ganesh N, Biegler LT (1987) A reduced Hessian strategy for sensitivity analysis of optimal flowsheets. AIChE J 33:282–296

    Article  Google Scholar 

  31. Yang X, Biegler LT (2013) Advanced-multi-step nonlinear model predictive control. J Process Control 23:1116–1128

    Article  Google Scholar 

  32. Jäschke J, Yang X, Biegler LT (2014) Fast economic model predictive control based on NLP-sensitivities. J Process Control 24:1260–1272

    Article  Google Scholar 

  33. Würth L, Hannemann R, Marquardt W (2011) A two-layer architecture for economically optimal process control and operation. J Process Control 21:311–321

    Article  Google Scholar 

  34. Wolf IJ, Muñoz DA, Marquardt W (2014) Consistent hierarchical economic NMPC for a class of hybrid systems using neighboring-extremal updates. J Process Control 24:389–398

    Article  Google Scholar 

  35. Diehl M, Bock H, Schlöder J (2005) A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J Control Optim 43:1714–1736

    Article  MathSciNet  MATH  Google Scholar 

  36. Diehl M, Ferreau HJ, Haverbeke N (2009) Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Magni L, Raimondo DM, Allgöwer F (eds) Nonlinear model predictive control, vol 384., Lecture Notes in Control and Information SciencesSpringer, Berlin Heidelberg, pp 391–417

    Chapter  Google Scholar 

  37. Biegler LT (2010) Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  38. Tabuada P (2007) Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control 52:1680–1685

    Article  MathSciNet  Google Scholar 

  39. Kookos IK, Perkins JD (2002) An algorithmic method for the selection of multivariable process control structures. J Process Control 12:85–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Ellis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ellis, M., Liu, J., Christofides, P.D. (2017). EMPC Systems: Computational Efficiency and Real-Time Implementation. In: Economic Model Predictive Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41108-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41108-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41107-1

  • Online ISBN: 978-3-319-41108-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics