Skip to main content

Introduction

  • Chapter
  • First Online:
Economic Model Predictive Control

Part of the book series: Advances in Industrial Control ((AIC))

  • 2358 Accesses

Abstract

The traditional approach for optimization and control of chemical processes is to employ a hierarchical approach. While this approach has been successfully deployed in industrial process control practice, a more integrated solution to optimization and control is needed for next-generation process operations. Economic model predictive control (EMPC) is a control technology that merges economic process optimization and control. A brief overview of the traditional hierarchical approach to optimization and control, key motivating factors for an integrated approach to optimization and control, and a high level discussion of the main difference between EMPC and more standard, i.e., tracking, model predictive control are provided in this chapter. Next, a few chemical process applications are presented. These applications are used in the subsequent chapters to study and analyze the various EMPC methods presented in this book. Finally, the objectives and the organization of this book are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seborg DE, Edgar TF, Mellichamp DA, Doyle FJ (2010) Process Dynamics and Control, 3rd edn. Wiley, New York, NY

    Google Scholar 

  2. Marlin TE, Hrymak AN (1996) Real-time operations optimization of continuous processes. In: Proceedings of the fifth international conference on chemical process control, Tahoe City, CA, pp 156–164

    Google Scholar 

  3. Darby ML, Nikolaou M, Jones J, Nicholson D (2011) RTO: an overview and assessment of current practice. J Process Control 21:874–884

    Article  Google Scholar 

  4. Mayne D, Michalska H (1990) Receding horizon control of nonlinear systems. IEEE Trans Autom Control 35:814–824

    Article  MathSciNet  MATH  Google Scholar 

  5. Henson MA (1998) Nonlinear model predictive control: current status and future directions. Comput Chem Eng 23:187–202

    Article  Google Scholar 

  6. Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23:667–682

    Article  Google Scholar 

  7. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36:789–814

    Article  MathSciNet  MATH  Google Scholar 

  8. Rawlings JB (2000) Tutorial overview of model predictive control. IEEE Control Syst Mag 20:38–52

    Article  Google Scholar 

  9. Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11:733–764

    Article  Google Scholar 

  10. Allgöwer F, Zheng A (eds) (2000) Nonlinear model predictive control, Progress in systems and control theorey, vol. 26. Birkäuser Basel, Washington D.C

    Google Scholar 

  11. Camacho EF, Alba CB (2013) Model predictive control, 2nd edn. Springer

    Google Scholar 

  12. Magni L, Raimondo DM, Allgöwer F (2009) Nonlinear model prediction control: towards new challenging applications, vol 384., Lecture Notes in Control and Information Sciences. Springer, Berlin Heidelberg

    Google Scholar 

  13. Rawlings JB, Mayne DQ (2009) Model predictive control: theory and design. Nob Hill Publishing, Madison, WI

    Google Scholar 

  14. Christofides PD, Liu J, Muñoz de la Peña D (2011) Networked and distributed predictive control: methods and nonlinear process network applications. Advances in Industrial Control Series. Springer, London, England (2011)

    Google Scholar 

  15. Grüne L, Pannek J (2011) Nonlinear model predictive control: theory and algorithms. Communications and control engineering. Springer, London, England

    Google Scholar 

  16. Backx T, Bosgra O, Marquardt W (2000) Integration of model predictive control and optimization of processes: enabling technology for market driven process operation. In: Proceedings of the IFAC symposium on advanced control of chemical processes, Pisa, Italy, pp 249–260

    Google Scholar 

  17. Kadam JV, Marquardt W (2007) Integration of economical optimization and control for intentionally transient process operation. In: Findeisen R, Allgöwer F, Biegler LT (eds) Assessment and future directions of nonlinear model predictive control, vol 358., Lecture Notes in Control and Information SciencesSpringer, Berlin Heidelberg, pp 419–434

    Chapter  Google Scholar 

  18. Siirola JJ, Edgar TF (2012) Process energy systems: control, economic, and sustainability objectives. Comput Chem Eng 47:134–144

    Article  Google Scholar 

  19. Davis J, Edgar T, Porter J, Bernaden J, Sarli M (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47:145–156

    Article  Google Scholar 

  20. de Gouvêa MT, Odloak D (1998) One-layer real time optimization of LPG production in the FCC unit: procedure, advantages and disadvantages. Comput Chem Eng 22:S191–S198

    Article  Google Scholar 

  21. Helbig A, Abel O, Marquardt W (2000) Structural concepts for optimization based control of transient processes. In: Allgöwer F, Zheng A (eds) Nonlinear model predictive control, Progress in Systems and Control Theory, vol. 26. Birkhäuser Basel, pp 295–311

    Google Scholar 

  22. Zanin AC, de Gouvêa MT, Odloak D (2002) Integrating real-time optimization into the model predictive controller of the FCC system. Control Eng Pract. 10:819–831

    Article  Google Scholar 

  23. Engell S (2007) Feedback control for optimal process operation. J Process Control 17:203–219

    Article  Google Scholar 

  24. Rawlings JB, Amrit R (2009) Optimizing process economic performance using model predictive control. In: Magni L, Raimondo DM, Allgöwer F (eds) Nonlinear model predictive control, vol 384., Lecture Notes in Control and Information Sciences. Springer, Berlin Heidelberg, pp 119–138

    Google Scholar 

  25. Huang R, Harinath E, Biegler LT (2011) Lyapunov stability of economically oriented NMPC for cyclic processes. J Process Control 21:501–509

    Article  Google Scholar 

  26. Angeli D, Amrit R, Rawlings JB (2012) On average performance and stability of economic model predictive control. IEEE Trans Autom Control 57:1615–1626

    Article  MathSciNet  Google Scholar 

  27. Heidarinejad M, Liu J, Christofides PD (2012) Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE J 58:855–870

    Article  MATH  Google Scholar 

  28. Douglas JM (1967) Periodic reactor operation. Ind Eng Chem Process Design Dev 6:43–48

    Article  Google Scholar 

  29. Lee CK, Bailey JE (1980) Modification of consecutive-competitive reaction selectivity by periodic operation. Ind Eng Chem Process Design Dev 19:160–166

    Article  Google Scholar 

  30. Sinc̆ić D, Bailey JE (1980) Analytical optimization and sensitivity analysis of forced periodic chemical processes. Chem Eng Sci 35:1153–1161

    Google Scholar 

  31. Watanabe N, Onogi K, Matsubara M (1981) Periodic control of continuous stirred tank reactors-I: the Pi criterion and its applications to isothermal cases. Chem Eng Sci 36:809–818

    Article  Google Scholar 

  32. Watanabe N, Kurimoto H, Matsubara M, Onogi K (1982) Periodic control of continuous stirred tank reactors-II: cases of a nonisothermal single reactor. Chem Eng Sci 37:745–752

    Article  Google Scholar 

  33. Barshad Y, Gulari E (1985) A dynamic study of CO oxidation on supported platinum. AIChE J 31:649–658

    Article  Google Scholar 

  34. Silveston PL (1987) Periodic operation of chemical reactors—a review of the experimental literature. Sādhanā 10:217–246

    Google Scholar 

  35. Shu X, Rigopoulos K, Çinar A (1989) Vibrational control of an exothermic CSTR: productivity improvement by multiple input oscillations. IEEE Trans Autom Control 34:193–196

    Article  MATH  Google Scholar 

  36. Sterman LE, Ydstie BE (1990) The steady-state process with periodic perturbations. Chem Eng Sci 45:721–736

    Article  Google Scholar 

  37. Sterman LE, Ydstie BE (1991) Periodic forcing of the CSTR: an application of the generalized \(\pi \)-criterion. AIChE J 37:986–996

    Article  Google Scholar 

  38. Özgülşen F, Adomaitis RA, Çinar A (1992) A numerical method for determining optimal parameter values in forced periodic operation. Chem Eng Sci 47:605–613

    Article  Google Scholar 

  39. Özgülşen F, Kendra SJ, Çinar A (1993) Nonlinear predictive control of periodically forced chemical reactors. AIChE J 39:589–598

    Article  Google Scholar 

  40. Özgülşen F, Çinar A (1994) Forced periodic operation of tubular reactors. Chem Eng Sci 49:3409–3419

    Article  Google Scholar 

  41. Silveston PL, Hudgins RR, Renken A (1995) Periodic operation of catalytic reactors—introduction and overview. Catal Today 25:91–112

    Article  Google Scholar 

  42. Budman H, Kzyonsek M, Silveston P (1996) Control of a nonadiabatic packed bed reactor under periodic flow reversal. Can J Chem Eng 74:751–759

    Article  Google Scholar 

  43. Lee JH, Natarajan S, Lee KS (2001) A model-based predictive control approach to repetitive control of continuous processes with periodic operations. J Process Control 11:195–207

    Article  Google Scholar 

  44. Natarajan S, Lee JH (2000) Repetitive model predictive control applied to a simulated moving bed chromatography system. Comput Chem Eng 24:1127–1133

    Article  Google Scholar 

  45. Budman H, Silveston PL (2008) Control of periodically operated reactors. Chem Eng Sci 63:4942–4954

    Article  Google Scholar 

  46. Mancusi E, Altimari P, Russo L, Crescitelli S (2011) Multiplicities of temperature wave trains in periodically forced networks of catalytic reactors for reversible exothermic reactions. Chem Eng J 171:655–668

    Article  Google Scholar 

  47. Silveston PL, Hudgins RR (eds) (2013) Periodic operation of reactors. Elsevier, Oxford, England

    Google Scholar 

  48. Bailey JE, Horn FJM (1971) Comparison between two sufficient conditions for improvement of an optimal steady-state process by periodic operation. J Optim Theory Appl 7:378–384

    Article  MathSciNet  MATH  Google Scholar 

  49. Bittanti S, Fronza G, Guardabassi G (1973) Periodic control: a frequency domain approach. IEEE Trans Autom Control 18:33–38

    Article  MathSciNet  MATH  Google Scholar 

  50. Bailey JE (1973) Periodic operation of chemical reactors: a review. Chem Eng Commun 1:111–124

    Article  Google Scholar 

  51. Guardabassi G, Locatelli A, Rinaldi S (1974) Status of periodic optimization of dynamical systems. J Optim Theory Appl 14:1–20

    Article  MathSciNet  MATH  Google Scholar 

  52. Alfani F, Carberry JJ (1970) An exploratory kinetic study of ethylene oxidation over an unmoderated supported silver catalyst. La Chimica e L’Industria 52:1192–1196

    Google Scholar 

  53. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1961) Mathematical theory of optimal processes. Fizmatgiz, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Ellis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ellis, M., Liu, J., Christofides, P.D. (2017). Introduction. In: Economic Model Predictive Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41108-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41108-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41107-1

  • Online ISBN: 978-3-319-41108-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics