Skip to main content

The Interdisciplinary Decision Map: A Reference Model for Production, Logistics and Traffic

  • Chapter
  • First Online:
Dynamic and Seamless Integration of Production, Logistics and Traffic

Abstract

Due to strong interdependencies between production, logistics and traffic, a decision in one of these fields has impacts on the others. However, decision-makers in and around today’s supply chains rarely consider effects of their decisions on other participants of the supply chain or the traffic system. Thus, a tool for decision support, which clearly illustrates the variety of impacts of a decision, is highly desirable. Accordingly, this chapter presents a reference model in the context of production, logistics and traffic, called Interdisciplinary Decision Map (IDM). The IDM allows for describing and analysing interdisciplinary impacts of decisions across the disciplines. Thus, it can serve as decision support tool for decision-makers out of the considered domains. The IDM’s applicability is demonstrated by using it to analyse selected impacts of an HGV toll’s introduction on production, logistics and traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand, N., Yang, M., van Duin, J. H. R., & Tavasszy, L. (2012). GenCLOn: An ontology for city logistics. Expert Systems with Applications, 39(15), 11944–11960.

    Article  Google Scholar 

  • Anderson, S., Allen, J., & Browne, M. (2005). Urban logistics—How can it meet policy makers’ sustainability objectives? Journal of Transport Geography, 13(1), 71–81.

    Article  Google Scholar 

  • Bahm, A., Leone, H., & Henning, G. (2011). SCONTO: A supply chain ONTOlogy that extends and formalizes the SCOR model. In American Institute of Chemical Engineers (Ed.), Proceedings of AIChE Annual Meeting 2011 (pp. 920–922).

    Google Scholar 

  • Bera, P., Burton-Jones, A., & Wand, Y. (2011). Guidelines for designing visual ontologies to support knowledge identification. MIS Quarterly, 35(4), 883–908.

    Google Scholar 

  • Bertalanffy, L. V. (1976). General system theory. New York: Braziller.

    Google Scholar 

  • Blecker, T., & Kersten, W. (2006). Managing risks in supply chains: How to build reliable collaboration in logistics. Berlin: Erich Schmidt Verlag.

    Google Scholar 

  • Boltze, M., Dinter, M., & Schöttler, U. (1994). The project FRUIT—A goal-oriented approach to traffic management in Frankfurt am Main and the Rhein-Main region. Traffic Engineering and Control, 35(7/8), 437–444.

    Google Scholar 

  • Broaddus, A., & Gertz, C. (2008). Tolling heavy goods vehicles. Transportation Research Record, 2066, 106–113.

    Article  Google Scholar 

  • Clausen, U., Iddink, U., & Neumann, L. (2008). Approaches for modelling commercial freight traffic regarding logistics aspects. In 3rd International Symposium on Transport Simulation. Surfers Paradise.

    Google Scholar 

  • Condeço-Melhorado, A., Gutiérrez, J., & García-Palomares, J. C. (2011). Spatial impacts of road pricing: Accessibility, regional spillovers and territorial cohesion. Transportation Research Part A, 45(3), 185–203.

    Google Scholar 

  • Conway, A., & Walton, C. M. (2009). Policy options for truck user charging. Transportation Research Record, 2115, 75–83.

    Article  Google Scholar 

  • Craighead, C., Blackhurst, J., Rungtusanatham, M., & Handfield, R. (2007). The severity of supply chain disruptions. Design characteristics and mitigation capabilities. Decision Science, 38(1), 131–156.

    Article  Google Scholar 

  • Doll, C., & Schaffer, A. (2007). Economic impact of the introduction of the German HGV toll system. Transport Policy, 14(1), 49–58.

    Article  Google Scholar 

  • Einbock, M. (2006). Effects of the Austrian road toll system on companies. International Journal of Physical Distribution and Logistics Management, 36(2), 153–169.

    Article  Google Scholar 

  • European Parliament. (2008). Pricing systems for road freight transport in EU member states and Switzerland. Brussels: European Parliament.

    Google Scholar 

  • Friedrich, H. (2010). Simulation of logistics in food retailing for freight transportation analysis. Dissertation, Karlsruhe Institut für Technologie.

    Google Scholar 

  • Gustafsson, I., Cardebring, P. W., & Fiedler, R. (2006). Road user charging for heavy goods vehicles—An overview of regional impact. Hamburg: East West Transport Corridor.

    Google Scholar 

  • Hensher, D. A., & Puckett, S. (2008). Assessing the influence of distance-based charges on freight transporters. Transport Reviews, 28(1), 1–19.

    Article  Google Scholar 

  • Krause, D. (2005). Luhmann-Lexikon: Eine Einführung in das Gesamtwerk von Niklas Luhmann. Stuttgart: UTB.

    Google Scholar 

  • Link, H. (2008). Acceptability of the German charging scheme for heavy goods vehicles: Empirical evidence from a freight company survey. Transport Reviews, 28(2), 141–158.

    Article  Google Scholar 

  • Luhmann, N. (2011). Organisation und Entscheidung. Wiesbaden: Verlag für Sozialwissenschaften.

    Book  Google Scholar 

  • Maier, R., Hädrich, T., & Peinl, R. (2005). Enterprise knowledge infrastructures. Berlin: Springer.

    Google Scholar 

  • Manheim, M. (1979). Fundamentals of transportation systems analysis. Cambridge, MA: The MIT Press.

    Google Scholar 

  • March, J. G. (1965). Handbook of organizations. Chicago, IL: Rand McNally.

    Google Scholar 

  • Martínez Sánchez, A., & Pérez Pérez, M. (2001). Lean indicators and manufacturing strategies. International Journal of Operations and Production Management, 21(11), 1433–1452.

    Article  Google Scholar 

  • McKinnon, A. (2006). A review of European truck tolling schemes and assessment of their possible impact on logistic systems. International Journal of Logistics: Research and Applications, 9(3), 191–205.

    Article  Google Scholar 

  • Miranda, H. F., & Rodrigues da Silva, A. N. (2012). Benchmarking sustainable urban mobility: The case of Curitiba, Brazil. Transport Policy, 21(5), 141–151.

    Article  Google Scholar 

  • Musso, A., & Rothengatter, W. (2013). Internalisation of external costs of transport—A target driven approach with a focus on climate change. Transport Policy, 22(9), 303–314.

    Article  Google Scholar 

  • Pfohl, H.-C., Ehrenhöfer, M., & Berbner, U. (2012, August 15–17). Fundamental problematic issues in interdisciplinary decision-making: An integrated view on production, logistics and traffic and transport. In Proceedings of the 9th International Meeting on Logistics Research. Montreal.

    Google Scholar 

  • Pfohl, H.-C., Zuber, C., Berbner, U., & Ehrenhöfer, M. (2013). Dynamic and seamless integration of production, logistics and traffic/transport—Barriers to interdisciplinary decision-making. In World Conference on Transport Research Society (Ed.), Selected Proceedings of the 13th World Conference on Transport Research Society.

    Google Scholar 

  • Poluha, R. G. (2007). Application of the SCOR model in supply chain management. London: Cambria Press.

    Google Scholar 

  • Porter, M. E. (1985). Competitive advantage: Creating and sustaining superior performance. New York: Free Press.

    Google Scholar 

  • Roggisch, N., & Wyssuek, B. (2002). Systeme und Modelle. In H. Krallmann, H. Frank, & N. Gronau (Eds.), Systemanalyse im Unternehmen: Vorgehensmodelle, Modellierungsverfahren und Gestaltungsoptionen (pp. 21–46). München: Oldenbourg Wissenschaftsverlag.

    Google Scholar 

  • Roorda, M. J., Cavalcante, R., McCabe, S., & Kwan, H. (2010). A conceptual framework for agent-based modelling of logistics services. Transportation Research Part E: Logistics and Transportation Review, 46(1), 18–31.

    Article  Google Scholar 

  • Rühl, F., & Boltze, M. (2016). Freight transport demand management—Influencing the freight transport demand within traffic management. In E. Abele, M. Boltze, & H.-C. Pfohl (Eds.), Dynamic and seamless integration of production, logistics and traffic. Fundamentals of interdisciplinary decision support (pp. XXX). Berlin: Springer.

    Google Scholar 

  • Rühl, F., Freudenreich, T., Berbner, U., Ottemöller, O., Friedrich, H., & Boltze, M. (2013). Production, logistics, and traffic: A systematic approach to understand interactions. In World Conference on Transport Research Society (Ed.), Selected Proceedings of the 13th World Conference on Transport Research Society.

    Google Scholar 

  • Sanders, N. R., Zacharia, Z. G., & Fugate, B. S. (2013). The interdisciplinary future of supply chain management research: Interdisciplinary future of SCM research. Decision Sciences, 44(3), 413–429.

    Article  Google Scholar 

  • Stathopoulos, A., Valeri, E., & Marcucci, E. (2012). Stakeholder reactions to urban freight policy innovation. Journal of Transport Geography, 22, 34–45.

    Article  Google Scholar 

  • Supply-Chain Council. (2010). Supply chain operations reference model. Version 10.0.

    Google Scholar 

  • Thom, A. (2008). Entwicklung eines Gestaltungsmodells zum Management von Risiken in Produktionsnetzwerken: ein Beitrag zum Risikomanagement in der Logistik. Berlin: Univ.-Verl. der TU Berlin.

    Google Scholar 

  • Vasallo, J. M., & López, E. (2010). Using input-output tables to estimate the effect of charging heavy goods vehicles on CPI. Journal of Transport Economics and Policy, 44(3), 317–329.

    Google Scholar 

  • Vidaillet, B. (2008). When “decision outcomes” are not the outcomes of decisions. In G. Hodgkinson & W. Starbuck (Eds.), The Oxford handbook of organizational decision making (pp. 418–437). Oxford: Oxford University Press.

    Google Scholar 

  • Wang, C., & Masini, A. (2009). The sand cone model revisited: The impact of service flexibility on quality, delivery, and cost. Working paper, London Business School.

    Google Scholar 

  • Zuber, C., Pfohl, H.-C., & Berbner, U. (2015). Integrating domains in supply chains: Development of requirements for interdisciplinary decision support based on an integrative framework of production, logistics, and traffic. In European Decision Sciences Institute, J. Stentoft, A. Paulraj, & G. Vastag (Eds.), Research in the decision sciences for innovations in global supply chain networks: Best papers from the 2014 Annual Conference (pp. 233–254). Upper Saddle River, NJ: Pearson FT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Boltze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boltze, M., Rühl, F., Berbner, U., Friedrich, H. (2017). The Interdisciplinary Decision Map: A Reference Model for Production, Logistics and Traffic. In: Abele, E., Boltze, M., Pfohl, HC. (eds) Dynamic and Seamless Integration of Production, Logistics and Traffic. Springer, Cham. https://doi.org/10.1007/978-3-319-41097-5_3

Download citation

Publish with us

Policies and ethics