Skip to main content

The Evolution of Human Skin and the Thousands of Species It Sustains, with Ten Hypothesis of Relevance to Doctors

  • Chapter
  • First Online:

Abstract

The entire skin is covered in microscopic life. The composition of this life—which species are present—has great importance for many aspects of dermatology. Little about this composition makes sense, except in light of evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We tend to think of beavers as ecosystem engineers in as much as their behaviors, which are encoded by their genes, lead them to build damns and lodges. These behaviors and the genes that underlie them are under natural selection such that natural selection can favor one lodge type over another via its effects on genes that influence behavior. In the same way, our bodies engineer the ecosystem that lives on them and natural selection can influence this ecosystem through its effects on our skin, its glands and the compounds produces in those glands. Our engineered skin ecosystem, in short, evolves.

  2. 2.

    Although this diversity is great, it is in some ways deceptive. Many species of bacteria, for example, are found on the skin, but these species derive disproportionately from just a handful of the bacterial phyla found in any pinch of soil. Best represented are the phyla Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes. Then within these phyla a few genera are disproportionately important, particularly Corynebacterium, Staphylococcus, Propionibacterium, and Streptococcus.

  3. 3.

    Of note, beneficial is a term with some baggage. Mutualisms such as those described here are relationships in which organisms of two different species both benefit from each other’s presence. However, mutualism is always a term reflecting the net condition. A beneficial microbe might have some costs, so long as its net effect is benefit. Similarly, the costs and benefits of any particular microbial species to human or other hosts are conditional. They depend on circumstances. A species that was beneficial 12,000 years ago to humans, might not be today. By the same token, a species that was not historically beneficial might be beneficial in light of our modern diets and lifestyles. In as much as human bodies (and their underlying genes) evolve relatively slowly this has the potential to lead to mismatches between the microbes our bodies favor and those that benefit us.

  4. 4.

    In addition, key features of the cell biology of human skin, including the sugars associated with cells, are also different from those in other apes in ways that seem likely to be of most consequence to microbes [33].

References

  1. Leider M, Buncke CM. Physical dimensions of the skin: determination of the specific gravity of skin, hair, and nail. AMA Arch Dermatol Syphilol. 1954;69(5):563–9.

    Article  CAS  Google Scholar 

  2. Goldsmith LA. My organ is bigger than your organ. Arch Dermatol. 1990;126(3):301–2.

    Article  CAS  PubMed  Google Scholar 

  3. Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193:1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hulcr J, Latimer AM, Henley JB, Rountree NR, Fierer N, Lucky A, et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS One. 2012;7(11):e47712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17(6):320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Christensen G, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;5(2):201–15.

    Article  CAS  PubMed  Google Scholar 

  8. Park B, Iwase T, Liu GY. Intranasal application of S. epidermidis prevents colonization by methicillin-resistant Staphylococcus aureus in mice. PLoS One. 2011;6(10):e25880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tlaskalová-Hogenová H, Štěpánková R, Hudcovic T, Tučková L, Cukrowska B, Lodinová-Žádnı́ková R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93(2):97–108.

    Article  PubMed  Google Scholar 

  11. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep. 2012;2:615.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verhulst NO, Beijleveld H, Knols BG, Takken W, Schraa G, Bouwmeester HJ, et al. Cultured skin microbiota attracts malaria mosquitoes. Malar J. 2009;8(1):302.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verhulst NO, Qiu YT, Beijleveld H, Maliepaard C, Knights D, Schulz S, et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS One. 2011;6(12):e28991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hadorn B, Hanimann F, Anders P, Curtius HC, Halverson R. Free amino-acids in human sweat from different parts of the body. Nature (Lond). 1967;215:416.

    Article  CAS  Google Scholar 

  16. Ara K, et al. Foot odor due to microbial metabolism and its control. Can J Microbiol. 2006;52:357–64.

    Article  CAS  PubMed  Google Scholar 

  17. Landy MWGH, Roseman SB, Colio LG. Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med. 1948;67:539–41.

    Article  CAS  PubMed  Google Scholar 

  18. Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Program NCS, Murray PR, Turner ML, Segre JA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palopoli MF, et al. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics. 2014;15(1):1124.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thoemmes MS, et al. Ubiquity and diversity of human-associated Demodex mites. PLoS One. 2014;9:e106265.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Palopoli MF, et al. Global divergence of the human follicle mite Demodex folliculorum: persistent associations between host ancestry and mite lineages. Proc Natl Acad Sci. 2015;112:15958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Council SE, Savage AM, Urban JM, et al. Diversity and evolution of the primate skin microbiome. Proc Biol Sci. 2016;283(1822):pii: 20152586.

    Google Scholar 

  24. James AG, Austin CJ, Cox DS, Taylor D, Calvert R. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol. 2013;83(3):527–40.

    Article  CAS  PubMed  Google Scholar 

  25. Leyden JJ, McGinley KJ, Hölzle E, Labows JN, Kligman AM. The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol. 1981;77(5):413–6.

    Article  CAS  PubMed  Google Scholar 

  26. Montagna W. The evolution of human skin. J Hum Evol. 1985;14(1):3–22.

    Article  Google Scholar 

  27. Ellis RA, Montagna W. The skin of primates. VI. The skin of the gorilla (Gorilla gorilla). Am J Phys Anthropol. 1962;20(2):79–93.

    Article  CAS  PubMed  Google Scholar 

  28. Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, et al. The bonobo genome compared with the chimpanzee and human genomes. Nature. 2012;486(7404):527–31.

    PubMed  PubMed Central  Google Scholar 

  29. Folk Jr GE, Semken Jr A. The evolution of sweat glands. Int J Biometeorol. 1991;35(3):180–6.

    Article  PubMed  Google Scholar 

  30. Kushlan JA. The evolution of hairlessness in man. Am Nat. 1980;116:727–9.

    Article  Google Scholar 

  31. Shelley WB, Hurley HJ, Nichols AC. Axillary odor: experimental study of the role of bacteria, apocrine sweat, and deodorants. AMA Arch Dermatol Syphilol. 1953;68(4):430–46.

    Article  CAS  Google Scholar 

  32. Urban J, Fergus DJ, Savage AM, Ehlers M, Menninger HL, Dunn RR, Horvath JE. The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome. Peer J. 2016;4:e1605. https://doi.org/10.7717/peerj.1605.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A. Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci U S A. 2006;103(20):7765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Dunn PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dunn, R.R. (2016). The Evolution of Human Skin and the Thousands of Species It Sustains, with Ten Hypothesis of Relevance to Doctors. In: Norman, R. (eds) Personalized, Evolutionary, and Ecological Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-41088-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41088-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41086-9

  • Online ISBN: 978-3-319-41088-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics