Skip to main content

Role of Inorganic Polyphosphate in the Cells of the Mammalian Brain

  • Chapter
  • First Online:
Inorganic Polyphosphates in Eukaryotic Cells

Abstract

Inorganic polyphosphate (polyP) is a polymer molecule of variable chain length, formed of linearly arranged orthophosphate residues that are linked through high-energy phosphoanhydride bonds identical to the ones found in ATP. PolyP has also been found in mammalian cells – it is important for blood coagulation, osteoclast function, immune response, etc. In the brain polyP is essential for precise functioning of mitochondria – from significance for the energy metabolism and mitochondrial calcium handling to the activation of permeability transition pore (PTP). PolyP has been shown to be a gliotransmitter, enabling signaling between astrocytes via activation of P2Y1 receptors. Thus, polyP plays many important roles in mammalian brain cells, ranging from signal transduction, mitochondrial metabolism, and activation of ion channels to involvement in PTP opening and triggering of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov AY, Fraley C, Diao CT et al (2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A 104:18091–18096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelova PR, Agrawalla BK, Elustondo PA et al (2014) In situ investigation of mammalian inorganic polyphosphate localization using novel selective fluorescent probes JC-D7 and JC-D8. ACS Chem Biol 9:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Aschar-Sobbi R, Abramov AY, Diao C et al (2008) High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J Fluoresc 18:859–866

    Article  CAS  PubMed  Google Scholar 

  • Dinarvand P, Hassanian SM, Qureshi SH et al (2014) Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor. Blood 123:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabel NW, Thomas V (1971) Evidence for the occurrence and distribution of inorganic polyphosphates in vertebrate tissues. J Neurochem 18:1229–1242

    Article  CAS  PubMed  Google Scholar 

  • Gourine AV, Llaudet E, Dale N et al (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111

    Article  CAS  PubMed  Google Scholar 

  • Gray MJ, Wholey WY, Wagner NO et al (2014) Polyphosphate is a primordial chaperone. Mol Cell 53:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KY, Hong BS, Yoon YJ et al (2007) Polyphosphate blocks tumour metastasis via anti-angiogenic activity. Biochem J 406:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Ruiz L, Gonzalez-Garcia I, Castro C et al (2006) Inorganic polyphosphate and specific induction of apoptosis in human plasma cells. Haematologica 91:1180–1186

    CAS  PubMed  Google Scholar 

  • Holmstrom KM, Marina N, Baev AY et al (2013) Signalling properties of inorganic polyphosphate in the mammalian brain. Nat Commun 4:1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Nunez MD, Moreno-Sanchez D, Hernandez-Ruiz L et al (2012) Myeloma cells contain high levels of inorganic polyphosphate which is associated with nucleolar transcription. Haematologica 97:1264–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawazoe Y, Shiba T, Nakamura R et al (2004) Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate. J Dent Res 83:613–618

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Cavanaugh EJ (2007) Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J Neurosci 27:6500–6509

    Article  CAS  PubMed  Google Scholar 

  • Kumble KD, Kornberg A (1995) Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 270:5818–5822

    Article  CAS  PubMed  Google Scholar 

  • Liebermann L (1888) Ueber das Nucleïn der Hefe und künstliche Darstellung eines Nucleïns aus Eiweiss und Metaphosphorsäure. Ber Chem Ges 21:598–607

    Article  Google Scholar 

  • Lorenz B, Munkner J, Oliveira MP et al (1997) Changes in metabolism of inorganic polyphosphate in rat tissues and human cells during development and apoptosis. Biochim Biophys Acta 1335:51–60

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JH (2012) Polyphosphate: a link between platelets, coagulation and inflammation. Int J Hematol 95:346–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov E, Zakharian E, Bladen C et al (2005) A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J 88:2614–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov E, Aschar-Sobbi R, Campanella M et al (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidlmayer LK, Gomez-Garcia MR, Blatter LA et al (2012) Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J Gen Physiol 139:321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stotz SC, Scott LO, Drummond-Main C et al (2014) Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels. Mol Brain 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakharian E, Thyagarajan B, French RJ et al (2009) Inorganic polyphosphate modulates TRPM8 channels. PLoS One 4:e5404

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Y. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baev, A.Y., Angelova, P.R., Abramov, A.Y. (2016). Role of Inorganic Polyphosphate in the Cells of the Mammalian Brain. In: Kulakovskaya, T., Pavlov, E., Dedkova, E. (eds) Inorganic Polyphosphates in Eukaryotic Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-41073-9_8

Download citation

Publish with us

Policies and ethics