Skip to main content

The Role of Inorganic Polyphosphates in Stress Response and Regulation of Enzyme Activities in Yeast

  • Chapter
  • First Online:

Abstract

Inorganic polyphosphates (polyPs) are multifunctional compounds involved in adaptation of microorganisms to stress. In yeast, polyPs serve a reserve of phosphorus that is consumed by cells with phosphate deficiency. Under phosphate excess, polyP biosynthesis regulates the intracellular phosphate concentration. PolyPs accumulate under conditions of growth suppression under nitrogen starvation and heavy metal toxic stress, and also upon the adaptation of yeast to a hydrophobic carbon source. The participation of polyPs in the regulation of enzyme activities is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andreeva NA, Kulakovskaya TV, Kulakovskaya EV et al (2008) Polyphosphates and exopolyphosphatases in cytosol and mitochondria of Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus. Biochemistry (Mosc) 73:65–69

    Article  CAS  Google Scholar 

  • Andreeva NA, Okorokov LA (1993) Purification and characterization of highly active and stable polyphosphatase from Saccharomyces cerevisiae cell envelope. Yeast 9:127–139

    Article  CAS  PubMed  Google Scholar 

  • Andreeva N, Ryazanova L, Dmitriev V et al (2013) Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates. FEMS Yeast Res 13:463–470

    Article  CAS  PubMed  Google Scholar 

  • Andreeva N, Ryazanova L, Dmitriev V et al (2014) Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol 59:381–389

    Article  CAS  Google Scholar 

  • Andreeva N, Trilisenko L, Eldarov M et al (2015) Polyphosphatase PPN1 of Saccharomyces cerevisiae: switching of exopolyphosphatase and endopolyphosphatase activities. PLoS One 10(3):e0119594. doi:10.1371/journal.pone.0119594

    Article  PubMed  PubMed Central  Google Scholar 

  • App H, Holzer H (1985) Control of yeast neutral trehalase by distinct polyphosphates and ribonucleic acid. Z Lebensm Unters Forsch 181:276–282

    Article  CAS  PubMed  Google Scholar 

  • Breus NA, Ryazanova LP, Dmitriev VV et al (2012) Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen. FEMS Yeast Res 12:617–624

    Article  CAS  PubMed  Google Scholar 

  • Breus NA, Ryazanova LP, Suzina NE et al (2011) Accumulation of inorganic polyphosphates in Saccharomyces cerevisiae under nitrogen deprivation: stimulation by magnesium ions and peculiarities of localization. Microbiology 80:624–630

    Article  CAS  Google Scholar 

  • De Venditis E, Zahn R, Fasano O (1986) Regeneration of GTP-bound from GDP-bound form of human and yeast ras proteins by nucleotide exchange, stimulatory effect of organic and inorganic polyphosphates. Eur J Biochem 161:473–478

    Article  Google Scholar 

  • Dmitriev VV, Crowley D, Rogachevsky VV et al (2011) Microorganisms form exocellular structures, trophosomes, to facilitate biodegradation of oil in aqueous media. FEMS Microbiol Lett 315:134–140

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev V, Tsiomenko A, Kulaev I et al (1980) A cyto-biochemical study of the ‘canal’ formation the yeast cell wall. Eur J Appl Microbiol Biotechnol 9:211–216

    Article  CAS  Google Scholar 

  • Gray MJ, Wholey W-Y, Wagner NO et al (2014) Polyphosphate is a primordial chaperone. Mol Cell 53:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofeler H, Jensen D, Pike MM et al (1987) Sodium transport and phosphorus metabolism in sodium-loaded yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo. Biochemistry 26:4953–4962

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, Neumann H, Lenherr ED et al (2009) Catalytic core of a membrane-associated eucaryotic polyphosphate polymerase. Science 324:513–516

    Article  CAS  PubMed  Google Scholar 

  • Kalebina TS, Egorov SN, Arbatskii NP et al (2008) The role of high-molecular-weight polyphosphates in activation of glucan transferase Bgl2p from Saccharomyces cerevisiae cell wall. Dokl Biochem Biophys 420:142–145

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD, Bertsh L, Kornberg A (1993) Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A 90:7029–7033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgottable. J Bacteriol 177:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, Chichester

    Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates. Wiley, Chichester

    Book  Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Trilisenko LV et al (2004) Two exopolyphosphatases in Saccharomyces cerevisiae cytosol at different culture conditions. Proc Biochem 39:1625–1630

    Article  CAS  Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Trilisenko LV et al (2005) Accumulation of polyphosphates and expression of high molecular weight exopolyphosphatase in the yeast Saccharomyces cerevisiae. Biochemistry (Mosc) 70:980–985

    Article  CAS  Google Scholar 

  • Kuroda A (2006) A polyphosphate-Lon protease complex in the adaptation of Escherichia coli to amino acid starvation. Biosci Biotechnol Biochem 70:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulakovskaya EV et al (2008) Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve. Biochemistry (Mosc) 73:985–999

    Article  CAS  Google Scholar 

  • Lichko L, Kulakovskaya T, Pestov N et al (2006) Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes. Biosci Rep 26:45–54

    Article  CAS  PubMed  Google Scholar 

  • Liss E, Langen P (1962) Versuche zur polyphosphat-uberkompensation in heffenzellen nach phosphatverarmung. Arch Microbiol 41:383–392

    CAS  Google Scholar 

  • Lorenz B, Marme S, Müller WEG et al (1994) Preparation and use of polyphosphate-modified zirconia for purification of nucleic acids and proteins. Anal Biochem 216:118–126

    Article  CAS  PubMed  Google Scholar 

  • Magnusson LU, Farewell A, Nyström T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242

    Article  CAS  PubMed  Google Scholar 

  • Persson BL, Lagerstedt JO, Pratt JR et al (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 43:225–244

    Article  CAS  PubMed  Google Scholar 

  • Pestov NA, Kulakovskaya TV, Kulaev IS (2004) Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess. FEMS Yeast Res 4:643–648

    Article  CAS  PubMed  Google Scholar 

  • Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Ann Rev Biochem 78:605–647

    Article  CAS  PubMed  Google Scholar 

  • Reddi AR, Jensen LT, Culotta VC (2009) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109:4722–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusch RN (1992) Biological complexes of poly-β-hydroxybutyrate. FEMS Rev 103:119–130

    CAS  Google Scholar 

  • Ryazanova L, Zvonarev A, Rusakova T et al (2015) Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations. Folia Microbiol. doi:10.1007/s12223-015-0440-9

    Google Scholar 

  • Schröder HC, Lorenz B, Kurz L et al (1999) Inorganic polyphosphate in eukaryotes: enzymes, metabolism and function. Prog Mol Subcell Biol 23:45–81

    Article  PubMed  Google Scholar 

  • Shabalin YA, Kulaev IS (1989) Solubilization and properties of yeast dolichylpyrophosphate: polyphosphate phosphotransferase. Biokhimia (Mosc) 54:68–75

    CAS  Google Scholar 

  • Shabalin YA, Naumov AV, Vagabov VM et al (1984) The discovery of new enzyme activity dolychildiphosphate polyphosphate phosphotransferase in yeast. Dokl Acad Nauk SSSR 278:482–485

    CAS  Google Scholar 

  • Sharma UK, Chatterji D (2010) Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol Rev 34:646–657

    Article  CAS  PubMed  Google Scholar 

  • Tomaschevsky AA, Ryasanova LP, Kulakovskaya TV et al (2010) Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase. Biochemistry (Mosc) 75:1052–1054

    Article  CAS  Google Scholar 

  • Trilisenko LV, Vagabov VM, Kulaev IS (2002) The content and chain length of polyphosphate from vacuoles of Saccharomyces cerevisiae VKM Y-1173. Biochemistry (Mosc) 67:592–596

    Article  CAS  Google Scholar 

  • Vagabov VM, Trilisenko LV, Kulakovskaya TV et al (2008) Effect of carbon source on polyphosphate accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 8:877–882

    Article  CAS  PubMed  Google Scholar 

  • Vagabov VM, Trilisenko LV, Shchipanova IN et al (1998) Changes in inorganic polyphosphate length during the growth of Saccharomyces cerevisiae. Microbiologiia (In Russian) 67:153–157

    CAS  Google Scholar 

  • Vagabov VM, Trilisenko LV, Kulaev IS (2000) Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochemistry (Mosc) 65:349–355

    CAS  Google Scholar 

  • Wolska-Mitaszko B (1997) Trehalases from spores and vegetative cells of yeast Saccharomyces cerevisiae. J Basic Microbiol 37:295–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Russian Foundation for Basic Research (grant 16-04-00396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kulakovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kulakovskaya, T., Ryasanova, L., Dmitriev, V., Zvonarev, A. (2016). The Role of Inorganic Polyphosphates in Stress Response and Regulation of Enzyme Activities in Yeast. In: Kulakovskaya, T., Pavlov, E., Dedkova, E. (eds) Inorganic Polyphosphates in Eukaryotic Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-41073-9_1

Download citation

Publish with us

Policies and ethics