Skip to main content

On the Relation of the Particle Number Distribution of Stochastic Wigner Trajectories and Experimental Realizations

  • Chapter
  • First Online:
Ultracold Atoms for Foundational Tests of Quantum Mechanics

Part of the book series: Springer Theses ((Springer Theses))

  • 504 Accesses

Abstract

We consider the Wigner quasi-probability distribution function of a single mode to address the question of whether a stochastic sampling and binning of the absolute square of the complex field amplitude can yield a distribution \(\tilde{P}_{n}\) that closely approximates the true particle number probability distribution \(P_{n}\) of the underlying quantum state. By providing an operational definition of the binned distribution \(P_{n}\) in terms of the Wigner function, we explicitly calculate the overlap between \(\tilde{P}_{n}\) and \(P_{n}\) and hence quantify the statistical distance between the two distributions. We find that there is indeed a close quantitative correspondence between \(\tilde{P}_{n}\) and \(P_{n}\) for a wide range of quantum states that have smooth and broad Wigner function relative to the scale of oscillations of the Wigner function for the relevant Fock state. However, we also find counterexamples, including states with high mode occupation, for which \(\tilde{P}_{n}\) does not closely approximate \(P_{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We clarify our terminology here by noting that evolution of stochastic trajectories for a phase-space variable from some initial state (defined appropriately by a corresponding initial Wigner function) under a particular Hamiltonian, is completely equivalent to directly sampling this variable from the known Wigner function of the final state after said evolution.

References

  1. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  2. Moyal, J.E.: Quantum Mechanics as a Statistical Theory. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 99–124. Cambridge University Press, Cambridge (1949)

    MATH  Google Scholar 

  3. Leonhardt, U.: Essential Quantum Optics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  4. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, New York (2011)

    MATH  Google Scholar 

  5. Walls, D.F., Milburn, G.: Quantum Optics. Springer Study Edition. Springer, New York (1995)

    MATH  Google Scholar 

  6. Drummond, P.D., Hardman, A.D.: Simulation of quantum effects in Raman-active waveguides. EPL (Europhy. Lett.) 21, 279 (1993)

    Article  ADS  Google Scholar 

  7. Werner, M.J., Raymer, M.G., Beck, M., Drummond, P.D.: Ultrashort pulsed squeezing by optical parametric amplification. Phys. Rev. A 52, 4202–4213 (1995)

    Article  ADS  Google Scholar 

  8. Steel, M.J., et al.: Dynamical quantum noise in trapped Bose-Einstein condensates. Phys. Rev. A 58, 4824 (1998)

    Article  ADS  Google Scholar 

  9. Sinatra, A., Castin, Y., Lobo, C.: A Monte Carlo formulation of the Bogoliubov theory. J. Mod. Opt. 47, 2629 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Sinatra, A., Lobo, C., Castin, Y.: Classical-field method for time dependent Bose-Einstein condensed gases. Phys. Rev. Lett. 87, 210404 (2001)

    Article  ADS  Google Scholar 

  11. Sinatra, A., Lobo, C., Castin, Y.: The truncated Wigner method for Bose-condensed gases: limits of validity and applications. J. Phys. B 35, 3599 (2002)

    Article  ADS  Google Scholar 

  12. Gardiner, C.W., Anglin, J.R., Fudge, T.I.A.: The stochastic Gross-Pitaevskii equation. J. Phys. B 35, 1555 (2002)

    Article  ADS  Google Scholar 

  13. Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003)

    Article  ADS  Google Scholar 

  14. Norrie, A.A., Ballagh, R.J., Gardiner, C.W.: Quantum turbulence in condensate collisions: an application of the classical field method. Phys. Rev. Lett. 94, 040401 (2005)

    Article  ADS  Google Scholar 

  15. Norrie, A.A., Ballagh, R.J., Gardiner, C.W.: Quantum turbulence and correlations in Bose-Einstein condensate collisions. Phys. Rev. A 73, 043617 (2006)

    Article  ADS  Google Scholar 

  16. Ruostekoski, J., Isella, L.: Dissipative quantum dynamics of bosonic atoms in a shallow 1d optical lattice. Phys. Rev. Lett. 95, 110403 (2005)

    Article  ADS  Google Scholar 

  17. Isella, L., Ruostekoski, J.: Nonadiabatic dynamics of a Bose-Einstein condensate in an optical lattice. Phys. Rev. A 72, 011601 (2005)

    Article  ADS  Google Scholar 

  18. Isella, L., Ruostekoski, J.: Quantum dynamics in splitting a harmonically trapped bose-einstein condensate by an optical lattice: truncated wigner approximation. Phys. Rev. A 74, 063625 (2006)

    Article  ADS  Google Scholar 

  19. Deuar, P., Drummond, P.D.: Correlations in a BEC collision: first-principles quantum dynamics with 150 000 atoms. Phys. Rev. Lett. 98, 120402 (2007)

    Article  ADS  Google Scholar 

  20. Polkovnikov, A.: Phase space representation of quantum dynamics. Ann. Phys. 325, 1790–1852 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Corney, J.F., Olsen, M.K.: Non-Gaussian pure states and positive wigner functions. Phys. Rev. A 91, 023824 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hudson, R.L.: When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249–252 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Blakie, P.B., Bradley, A.S., Davis, M.J., Ballagh, R.J., Gardiner, C.W.: Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008)

    Article  ADS  Google Scholar 

  24. Martin, A.D., Ruostekoski, J.: Quantum and thermal effects of dark solitons in a one-dimensional Bose gas. Phys. Rev. Lett. 104, 194102 (2010)

    Article  ADS  Google Scholar 

  25. Witkowska, E., Deuar, P., Gajda, M., Rzazewski, K.: Solitons as the early stage of quasicondensate formation during evaporative cooling. Phys. Rev. Lett. 106, 135301 (2011)

    Article  ADS  Google Scholar 

  26. Karpiuk, T., et al.: Spontaneous solitons in the thermal equilibrium of a quasi-1d Bose gas. Phys. Rev. Lett. 109, 205302 (2012)

    Article  ADS  Google Scholar 

  27. Javanainen, J., Ruostekoski, J.: Emergent classicality in continuous quantum measurements. New J. Phys. 15, 013005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lee, M.D., Ruostekoski, J.: Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction. Phys. Rev. A 90, 023628 (2014)

    Article  ADS  Google Scholar 

  29. Olsen, M.K., Bradley, A.S.: Numerical representation of quantum states in the positive-P and Wigner representations. Opt. Commun. 282, 3924–3929 (2009)

    Article  ADS  Google Scholar 

  30. Olsen, M.K., Bradley, A.S., Cavalcanti, S.B.: Fock-state dynamics in Raman photoassociation of Bose-Einstein condensates. Phys. Rev. A 70, 033611 (2004)

    Article  ADS  Google Scholar 

  31. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  32. Loudon, R., Knight, P.L.: Squeezed light. J. Mod. Opt. 34, 709–759 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Yuen, H.P.: Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226–2243 (1976)

    Article  ADS  Google Scholar 

  34. Gilliland, D.C.: Integral of the bivariate normal distribution over an offset circle. J. Am. Stat. Assoc. 57, 758–768 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schleich, W., Wheeler, J.A.: Oscillations in photon distribution of squeezed states and interference in phase space. Nature 326, 574–577 (1987)

    Article  ADS  Google Scholar 

  36. Marshall, T.W.: Random electrodynamics. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 276, 475–491 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lewis-Swan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewis-Swan, R.J. (2016). On the Relation of the Particle Number Distribution of Stochastic Wigner Trajectories and Experimental Realizations. In: Ultracold Atoms for Foundational Tests of Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41048-7_6

Download citation

Publish with us

Policies and ethics