Skip to main content

Proposal for Demonstrating the Hong–Ou–Mandel Effect with Matter Waves

  • Chapter
  • First Online:
Ultracold Atoms for Foundational Tests of Quantum Mechanics

Part of the book series: Springer Theses ((Springer Theses))

  • 568 Accesses

Abstract

Two-particle interference is a quintessential effect of quantum mechanics which is perhaps most beautifully demonstrated by the Hong–Ou–Mandel effect. In this phenomenon, the probability amplitudes of two indistinguishable photons entering opposing inputs of a beam-splitter interfere destructively, in a manner which is not describable by any classical theory. When realized with photons prepared in the two-mode squeezed vacuum state, this two-particle interference also serves as a demonstration of the strong non-classical correlations between the modes, in particular a violation of the Cauchy–Schwarz inequality. This elegant effect is thus intrinsically related to a violation of a Bell inequality, as both phenomena rely on underlying non-classical features of the quantum state. In this chapter we outline a proposal to demonstrate the Hong–Ou–Mandel effect with massive particles, utilizing pairs of atoms produced by spontaneous four-wave mixing via colliding condensates. However, unlike the two-mode quantum optics scheme, the multimode nature of the collision halo motivates us to formulate a new measurement protocol to quantify the effect in the atomic case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  2. Ou, Z.Y., Mandel, L.: Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)

    Article  ADS  Google Scholar 

  5. Duan, L.-M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010)

    Article  ADS  Google Scholar 

  6. Lang, C., et al.: Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies. Nat. Phys. 9, 345–348 (2013)

    Article  Google Scholar 

  7. Perrin, A., et al.: Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose-Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007)

    Article  ADS  Google Scholar 

  8. Perrin, A., et al.: Atomic four-wave mixing via condensate collisions. New J. Phys. 10, 045021 (2008)

    Article  ADS  Google Scholar 

  9. Krachmalnicoff, V., et al.: Spontaneous four-wave mixing of de Broglie waves: beyond optics. Phys. Rev. Lett. 104, 150402 (2010)

    Article  ADS  Google Scholar 

  10. Jaskula, J.-C., et al.: Sub-Poissonian number differences in four-wave mixing of matter waves. Phys. Rev. Lett. 105, 190402 (2010)

    Article  ADS  Google Scholar 

  11. Kheruntsyan, K.V., et al.: Violation of the Cauchy-Schwarz inequality with matter waves. Phys. Rev. Lett. 108, 260401 (2012)

    Article  ADS  Google Scholar 

  12. Kozuma, M., et al.: Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction. Phys. Rev. Lett. 82, 871–875 (1999)

    Article  ADS  Google Scholar 

  13. Meystre, P.: Atom Optics. Springer, New York (2001)

    Book  Google Scholar 

  14. Bücker, R., et al.: Twin-atom beams. Nat. Phys. 7, 608 (2011)

    Article  Google Scholar 

  15. Lücke, B., et al.: Twin matter waves for interferometry beyond the classical limit. Science 334, 773 (2011)

    Article  ADS  Google Scholar 

  16. Gross, C., et al.: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219 (2011)

    Article  ADS  Google Scholar 

  17. Rarity, J.G., Tapster, P.R.: Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990)

    Article  ADS  Google Scholar 

  18. Norrie, A.A., Ballagh, R.J., Gardiner, C.W.: Quantum turbulence and correlations in Bose-Einstein condensate collisions. Phys. Rev. A 73, 043617 (2006)

    Article  ADS  Google Scholar 

  19. Savage, C.M., Schwenn, P.E., Kheruntsyan, K.V.: First-principles quantum simulations of dissociation of molecular condensates: atom correlations in momentum space. Phys. Rev. A 74, 033620 (2006)

    Article  ADS  Google Scholar 

  20. Deuar, P., Drummond, P.D.: Correlations in a BEC collision: first-principles quantum dynamics with 150 000 atoms. Phys. Rev. Lett. 98, 120402 (2007)

    Article  ADS  Google Scholar 

  21. Mølmer, K., et al.: Hanbury Brown and Twiss correlations in atoms scattered from colliding condensates. Phys. Rev. A 77, 033601 (2008)

    Article  ADS  Google Scholar 

  22. Ogren, M., Kheruntsyan, K.V.: Atom-atom correlations in colliding Bose-Einstein condensates. Phys. Rev. A. 79, 021606 (2009)

    Article  ADS  Google Scholar 

  23. Deuar, P., Chwedeńczuk, J., Trippenbach, M., Ziń, P.: Bogoliubov dynamics of condensate collisions using the positive-\(P\) representation. Phys. Rev. A 83, 063625 (2011)

    Article  ADS  Google Scholar 

  24. Batelaan, H.: The Kapitza-Dirac effect. Contemp. Phys. 41, 369–381 (2000)

    Article  ADS  Google Scholar 

  25. Rarity, J.G., Tapster, P.R.: Two-color photons and nonlocality in fourth-order interference. Phys. Rev. A 41, 5139–5146 (1990)

    Article  ADS  Google Scholar 

  26. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ögren, M., Kheruntsyan, K.V.: Role of spatial inhomogeneity in dissociation of trapped molecular condensates. Phys. Rev. A 82, 013641 (2010)

    Article  ADS  Google Scholar 

  28. Hilligsøe, K.M., Mølmer, K.: Phase-matched four wave mixing and quantum beam splitting of matter waves in a periodic potential. Phys. Rev. A 71, 041602 (2005)

    Article  ADS  Google Scholar 

  29. Bonneau, M., et al.: Tunable source of correlated atom beams. Phys. Rev. A 87, 061603 (2013)

    Article  ADS  Google Scholar 

  30. Kofler, J., et al.: Einstein-Podolsky-Rosen correlations from colliding Bose-Einstein condensates. Phys. Rev. A 86, 032115 (2012)

    Article  ADS  Google Scholar 

  31. Lewis-Swan, R.J., Kheruntsyan, K.V.: to be published (see also the Book of Abstracts of ICAP 2012 – The 23rd International Conference on Atomic Physics, 23–27 July 2012, Ecole Polytechnique, Palaiseau, France)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lewis-Swan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewis-Swan, R.J. (2016). Proposal for Demonstrating the Hong–Ou–Mandel Effect with Matter Waves. In: Ultracold Atoms for Foundational Tests of Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41048-7_2

Download citation

Publish with us

Policies and ethics