Skip to main content

Introduction and Background Physics

  • Chapter
  • First Online:
  • 528 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we outline the central arguments and themes of this thesis. Specifically, we briefly discuss the well-known EPR paradox and the related Bell inequalities. The remainder of the chapter is devoted to an introduction to the key physical systems and theoretical techniques used in this thesis. In particular, we briefly cover the physical processes of spontaneous four-wave mixing and spin-changing collisions in (spinor) Bose-Einstein condensates. We also discuss the Wigner and positive P phase-space representation of quantum mechanics and give a detailed discussion of how these representations can be used to stochastically simulate large multi-mode quantum systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Mermin, N.D.: What’s wrong with this pillow? Phys. Today 42, 9–11 (1989)

    Article  ADS  Google Scholar 

  3. Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (a). Il Nuovo Cimento Ser. 10(1), 48–66 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ou, Z.Y., Pereira, S.F., Kimble, H.J., Peng, K.C.: Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992)

    Article  ADS  Google Scholar 

  5. Reid, M.D.: Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989)

    Article  ADS  Google Scholar 

  6. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gross, C., et al.: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219 (2011)

    Article  ADS  Google Scholar 

  8. Raymer, M.G., Funk, A.C., Sanders, B.C., de Guise, H.: Separability criterion for separate quantum systems. Phys. Rev. A 67, 052104 (2003)

    Article  ADS  Google Scholar 

  9. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Phys. (N.Y.) 1, 195 (1964)

    Google Scholar 

  10. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Rarity, J.G., Tapster, P.R.: Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990)

    Article  ADS  Google Scholar 

  13. Rowe, M.A., et al.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  Google Scholar 

  14. Sakai, H., et al.: Spin correlations of strongly interacting massive fermion pairs as a test of Bell’s inequality. Phys. Rev. Lett. 97, 150405 (2006)

    Article  ADS  Google Scholar 

  15. Garg, A., Mermin, N.D.: Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987)

    Article  ADS  Google Scholar 

  16. Zurek, W.H.: Decoherence and the transition from quantum to classical–revisited. arXiv preprint (2003). arXiv:quant-ph/0306072

  17. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Yurke, B., McCall, S.L., Klauder, J.R.: SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)

    Article  ADS  Google Scholar 

  19. Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  20. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. Lett. 130, 2529–2539 (1963)

    ADS  MathSciNet  Google Scholar 

  21. Hanbury Brown, R., Twiss, H.Q.: Interferometry of the intensity fluctuations in light, i. basic theory: The correlation between photons in coherent beams of radiation. Proc. R. Soc. Lond. 242, 300–324 (1957)

    Article  ADS  MATH  Google Scholar 

  22. Su, C., Wódkiewicz, K.: Quantum versus stochastic or hidden-variable fluctuations in two-photon interference effects. Phys. Rev. A 44, 6097–6108 (1991)

    Article  ADS  Google Scholar 

  23. Walls, D.F., Milburn, G.: Quantum Optics. Springer Study Edition. Springer, Berlin (1995)

    MATH  Google Scholar 

  24. Reid, M.D., Walls, D.F.: Violations of classical inequalities in quantum optics. Phys. Rev. A 34, 1260–1276 (1986)

    Article  ADS  Google Scholar 

  25. Perrin, A., et al.: Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose-Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007)

    Article  ADS  Google Scholar 

  26. Perrin, A., et al.: Atomic four-wave mixing via condensate collisions. New J. Phys. 10, 045021 (2008)

    Article  ADS  Google Scholar 

  27. Mølmer, K., et al.: Hanbury Brown and Twiss correlations in atoms scattered from colliding condensates. Phys. Rev. A 77, 033601 (2008)

    Article  ADS  Google Scholar 

  28. Kheruntsyan, K.V., et al.: Violation of the Cauchy-Schwarz inequality with matter waves. Phys. Rev. Lett. 108, 260401 (2012)

    Article  ADS  Google Scholar 

  29. Jaskula, J.-C., et al.: Sub-Poissonian number differences in four-wave mixing of matter waves. Phys. Rev. Lett. 105, 190402 (2010)

    Article  ADS  Google Scholar 

  30. Jeltes, T., et al.: Comparison of the Hanbury Brown-Twiss effect for bosons and fermions. Nature 445, 402–405 (2007)

    Article  ADS  Google Scholar 

  31. Krachmalnicoff, V., et al.: Spontaneous four-wave mixing of de Broglie waves: Beyond optics. Phys. Rev. Lett. 104, 150402 (2010)

    Article  ADS  Google Scholar 

  32. Deuar, P., et al.: Anisotropy in \(s\)-wave Bose-Einstein condensate collisions and its relationship to superradiance. Phys. Rev. A 90, 033613 (2014)

    Article  ADS  Google Scholar 

  33. Chwedeńczuk, J., et al.: Pair correlations of scattered atoms from two colliding Bose-Einstein condensates: Perturbative approach. Phys. Rev. A 78, 053605 (2008)

    Article  ADS  Google Scholar 

  34. Ogren, M., Kheruntsyan, K.V.: Atom-atom correlations in colliding Bose-Einstein condensates. Phys. Rev. A. 79, 021606 (2009)

    Article  ADS  Google Scholar 

  35. Ziń, P., Chwedeńczuk, J., Trippenbach, M.: Elastic scattering losses from colliding Bose-Einstein condensates. Phys. Rev. A 73, 033602 (2006)

    Article  ADS  Google Scholar 

  36. Ohmi, T., Machida, K.: Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn. 67, 1822–1825 (1998)

    Article  ADS  Google Scholar 

  37. Saito, H., Kawaguchi, Y., Ueda, M.: Breaking of chiral symmetry and spontaneous rotation in a spinor Bose-Einstein condensate. Phys. Rev. Lett. 96, 065302 (2006)

    Article  ADS  Google Scholar 

  38. Gross, C., et al.: Squeezing and entanglement in a Bose-Einstein condensate. Nature 480, 219–223 (2011)

    Article  ADS  Google Scholar 

  39. Law, C.K., Pu, H., Bigelow, N.P.: Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998)

    Article  ADS  Google Scholar 

  40. Zhang, W., Zhou, D.L., Chang, M.-S., Chapman, M.S., You, L.: Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A 72, 013602 (2005)

    Article  ADS  Google Scholar 

  41. Zhang, W., You, L.: An effective quasi-one-dimensional description of a spin-1 atomic condensate. Phys. Rev. A 71, 025603 (2005)

    Article  ADS  Google Scholar 

  42. Pu, H., Law, C.K., Raghavan, S., Eberly, J.H., Bigelow, N.P.: Spin-mixing dynamics of a spinor Bose-Einstein condensate. Phys. Rev. A 60, 1463–1470 (1999)

    Article  ADS  Google Scholar 

  43. Chang, M.-S., et al.: Observation of spinor dynamics in optically trapped \(^{87}{\rm Rb}\) Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)

    Article  ADS  Google Scholar 

  44. Chang, M.-S., Qin, Q., Zhang, W., You, L., Chapman, M.S.: Coherent spinor dynamics in a spin-1 Bose condensate. Nat. Phys. 1, 111–116 (2005)

    Article  Google Scholar 

  45. Kronjäger, J., et al.: Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals. Phys. Rev. A 72, 063619 (2005)

    Article  ADS  Google Scholar 

  46. Klempt, C., et al.: Multiresonant spinor dynamics in a Bose-Einstein condensate. Phys. Rev. Lett. 103, 195302 (2009)

    Article  ADS  Google Scholar 

  47. Klempt, C., et al.: Parametric amplification of vacuum fluctuations in a spinor condensate. Phys. Rev. Lett. 104, 195303 (2010)

    Article  ADS  Google Scholar 

  48. Hoang, T.M., et al.: Dynamic stabilization of a quantum many-body spin system. Phys. Rev. Lett. 111, 090403 (2013)

    Article  ADS  Google Scholar 

  49. Oberthaler, M.K., Linnemann, D.: Private Communication (2015)

    Google Scholar 

  50. Linnemann, D., Lewis-Swan, R.J., Strobel, H., Mussel, W., Kheruntstyan, K.V., Oberthaler, M.K.: Quantum-enhanced sensing based on time reversal of non-linear dynamics (2016). arXiv:1602.07505

  51. Kawaguchi, Y., Ueda, M.: Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  52. Stamper-Kurn, D.M., Ueda, M.: Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013)

    Article  ADS  Google Scholar 

  53. Widera, A., et al.: Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87 rb atoms. New J. Phys. 8, 152 (2006)

    Article  ADS  Google Scholar 

  54. Schmaljohann, H., et al.: Dynamics of \({F}=2\) spinor Bose-Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004)

    Article  ADS  Google Scholar 

  55. Lewis-Swan, R.J., Kheruntsyan, K.V.: Sensitivity to thermal noise of atomic Einstein-Podolsky-Rosen entanglement. Phys. Rev. A 87, 063635 (2013)

    Article  ADS  Google Scholar 

  56. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  57. Polkovnikov, A.: Phase space representation of quantum dynamics. Ann. Phys. 325, 1790–1852 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Schleich, W.P.: Quantum Optics in Phase Space. Wiley, Berlin (2011)

    MATH  Google Scholar 

  59. Leonhardt, U.: Essential Quantum Optics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  60. Opanchuk, B.: Quasiprobability methods in quantum interferometry of ultracold matter. Ph.D. thesis, Swinburne University of Technology (2014)

    Google Scholar 

  61. Gardiner, C.W.: Handbook of Stochastic Methods, vol. 4. Springer, Berlin (1985)

    Google Scholar 

  62. Gardiner, C. & Zoller, P. Quantum noise, vol. 56 (Springer Science & Business Media, 2004)

    Google Scholar 

  63. Sinatra, A., Lobo, C., Castin, Y.: The truncated Wigner method for Bose-condensed gases: limits of validity and applications. J. Phys. B 35, 3599 (2002)

    Article  ADS  Google Scholar 

  64. Olsen, M.K., Bradley, A.S.: Numerical representation of quantum states in the positive-P and Wigner representations. Opt. Comm. 282, 3924–3929 (2009)

    Article  ADS  Google Scholar 

  65. Ruostekoski, J. & Martin, A. Truncated wigner method for bose gases. In Gardiner, S.A., Proukakis, N., Davis, M.J. & Szymanska, M. (eds.) Quantum gases: Finite temperature and non-equilibrium dynamics (World Scientific, 2013)

    Google Scholar 

  66. Isella, L., Ruostekoski, J.: Nonadiabatic dynamics of a bose-einstein condensate in an optical lattice. Phys. Rev. A 72, 011601 (2005)

    Article  ADS  Google Scholar 

  67. Barnett, R., Polkovnikov, A., Vengalattore, M.: Prethermalization in quenched spinor condensates. Phys. Rev. A 84, 023606 (2011)

    Article  ADS  Google Scholar 

  68. Drummond, P., Gardiner, C.: Generalised P-representations in quantum optics. J. Phys. A 13, 2353 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  69. Vaughan, T.G.: The quantum dynamics of dilute gas BEC formation. Master’s thesis, University of Queensland (2001)

    Google Scholar 

  70. Gardiner, C., Drummond, P.: Ten years of the positive P-representation. In: Inguva, R. (ed.) Recent Developments in Quantum Optics, pp. 77–86. Springer, Berlin (1993)

    Chapter  Google Scholar 

  71. Dennis, G.R., Hope, J.J., Johnsson, M.T.: Xmds2: Fast, scalable simulation of coupled stochastic partial differential equations. Comput. Phys. Commun. 184, 201–208 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  72. Abrikosov, A., Gor\(\acute{\rm k}\)ov, L., Dzyaloshinski, I., Dzialoshinskiui, I.: Methods of Quantum Field Theory in Statistical Physics. Dover Books on Physics Series. Dover Publications, New York (1975)

    Google Scholar 

  73. Deuar, P., Drummond, P.D.: First-principles quantum dynamics in interacting Bose gases: I. the positive \(P\) representation. J. Phys. A: Math. Gen. 39, 1163 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Gilchrist, A., Gardiner, C.W., Drummond, P.D.: Positive P representation: Application and validity. Phys. Rev. A 55, 3014–3032 (1997)

    Article  ADS  Google Scholar 

  75. Ögren, M., Kheruntsyan, K.V., Corney, J.F.: First-principles quantum dynamics for fermions: Application to molecular dissociation. EPL 92, 36003 (2010)

    Article  ADS  Google Scholar 

  76. Deuar, P., Chwedeńczuk, J., Trippenbach, M., Ziń, P.: Bogoliubov dynamics of condensate collisions using the positive-\(P\) representation. Phys. Rev. A 83, 063625 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lewis-Swan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewis-Swan, R.J. (2016). Introduction and Background Physics. In: Ultracold Atoms for Foundational Tests of Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41048-7_1

Download citation

Publish with us

Policies and ethics