Search for Dark Matter with ATLAS pp 61-72 | Cite as
Mono-Jet Events as Dark Matter Signature at Colliders
Chapter
First Online:
- 289 Downloads
Abstract
In this chapter, a possible signature of Dark Matter pair production at colliders is discussed. The general features are described in Sect. 5.1 and the signal description in an effective field theory (EFT) framework is introduced in Sect. 5.2, where also the applicability of this EFT is briefly discussed. An alternative approach using a simplified model with a light mediator is presented in Sect. 5.3. The Standard Model background contributions are described in Sect. 5.4 and an overview of the collider results before 2012 is given in Sect. 5.5.
Keywords
Dark Matter Pair Production Standard Model Background Contributions Effective Field Theory (EFT) WIMP Mass Mediator Mass
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Aaltonen T et al (2008) Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in pp collisions at \(\sqrt{s} = 1:96\) TeV. Phys Rev Lett 101(18):181602. doi: 10.1103/PhysRevLett.101.181602
- 2.Abazov V et al (2003) Search for large extra dimensions in the monojet + missing \(E_T\) channel at DØ”. Phys Rev Lett 90:251802. doi: 10.1103/PhysRevLett.90.251802. arXiv:hep-ex/0302014 [hep-ex]
- 3.The CMS Collaboration (2011). Search for new physics with a mono-jet and missing transverse energy in pp collisions at \(\sqrt{s} = 7\) TeV. Phys Rev Lett 107:201804. doi: 10.1103/PhysRevLett.107.201804. arXiv:1106.4775 [hep-ex]
- 4.The ATLAS Collaboration (2011). Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in \(\sqrt{s} = 7\) TeV proton-proton collisions. Phys Lett B 705:294–312. doi: 10.1016/j.physletb.2011.10.006. arXiv:1106.5327 [hep-ex]Google Scholar
- 5.Goodman J et al (2011) Constraints on light majorana dark matter from colliders. Phys Lett B 695:185–188. doi: 10.1016/j.physletb.2010.11.009. arXiv:1005.1286 [hep-ph]Google Scholar
- 6.Goodman J et al (2010) Constraints on dark matter from colliders. Phys Rev D 82:116010. doi: 10.1103/PhysRevD.82.116010. arXiv:1008.1783 [hep-ph]
- 7.Rajaraman A et al (2011) LHC bounds on interactions of dark matter. Phys Rev D 84:095013. doi: 10.1103/PhysRevD.84.095013. arXiv:1108.1196 [hep-ph]
- 8.Fox PJ et al (2012) Missing energy signatures of dark matter at the LHC. Phys Rev D 85:056011. doi: 10.1103/PhysRevD.85.056011. arXiv:1109.4398 [hep-ph]
- 9.Cheung K et al (2012) Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection, and collider. JCAP 1205:001. doi: 10.1088/1475-7516/2012/05/001. arXiv:1201.3402 [hep-ph]Google Scholar
- 10.Bai Y, Fox PJ, Harnik R (2010) The tevatron at the frontier of dark matter direct detection. JHEP 1012:048. doi: 10.1007/JHEP12(2010)048. arXiv:1005.3797 [hep-ph]
- 11.Aaltonen T et al (2012) A search for dark matter in events with one jet and missing transverse energy in \(p\bar{p}\) collisions at \(\sqrt{s} = 1:96\) TeV. Phys Rev Lett 108:211804. doi: 10.1103/PhysRevLett.108.211804. arXiv:1203.0742 [hep-ex]
- 12.The ATLAS Collaboration (2013). Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 1304:075. doi: 10.1007/JHEP04(2013)075. arXiv:1210.4491 [hep-ex]
- 13.The CMS Collaboration (2012). Search for dark matter and large extra dimensions in monojet events in pp collisions at \(\sqrt{s} = 7\) TeV. JHEP 1209:094. doi: 10.1007/JHEP09(2012)094. arXiv:1206.5663 [hep-ex]
- 14.Belanger G et al (2009) Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput Phys Commun 180:747–767. doi: 10.1016/j.cpc.2008.11.019. arXiv:0803.2360 [hep-ph]Google Scholar
- 15.Cotta R et al (2013) Bounds on dark matter interactions with electroweak gauge bosons. Phys Rev D 88:116009. doi: 10.1103/PhysRevD.88.116009. arXiv:1210.0525 [hep-ph]
- 16.Dreiner H et al (2013) Illuminating dark matter at the ILC. Phys Rev D 87(7):075015. doi: 10.1103/PhysRevD.87.075015. arXiv:1211.2254 [hep-ph]
- 17.Shoemaker IM, Vecchi L (2012) Unitarity and monojet bounds on models for DAMA, CoGeNT, and CRESST-II. Phys Rev D 86:015023. doi: 10.1103/PhysRevD.86.015023. arXiv:1112.5457 [hep-ph]
- 18.Fox PJ, Williams C (2013) Next-to-leading order predictions for dark matter production at hadron colliders. Phys Rev D 87(5):054030. doi: 10.1103/PhysRevD.87.054030. arXiv:1211.6390 [hep-ph]
- 19.Haisch U, Kahlhoefer F, Unwin J (2013) The impact of heavy-quark loops on LHC dark matter searches. JHEP 1307:125. doi: 10.1007/JHEP07(2013)125. arXiv:1208.4605 [hep-ph]
- 20.Fox PJ et al (2011) LEP shines light on dark matter. Phys Rev D 84:014028. doi: 10.1103/PhysRevD.84.014028. arXiv:1103.0240 [hep-ph]
- 21.Busoni G et al (2014) On the validity of the effective field theory for dark matter searches at the LHC. Phys Lett B 728:412–421. doi: 10.1016/j.physletb.2013.11.069. arXiv:1307.2253 [hep-ph]Google Scholar
- 22.The ATLAS Collaboration (2015). Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. submitted to EPJC. arXiv:1502.01518 [hep-ex]
- 23.The ATLAS Collaboration (2011). Search for new phenomena in monojet plus missing transverse momentum final states using 1 fb-1 of pp collisions at \(\sqrt{s}\)=7 TeV with the ATLAS detector. Technical report ATLAS-CONF-2011-096. Geneva: CERNGoogle Scholar
- 24.The ATLAS Collaboration (2013). Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \(\sqrt{s}=7\) TeV with the ATLAS detector. Phys Rev Lett 110(1):011802. doi: 10.1103/PhysRevLett.110.011802
- 25.The CMS Collaboration (2012). Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy. Phys Rev Lett 108(26)–261803. doi: 10.1103/PhysRevLett.108.261803
Copyright information
© Springer International Publishing Switzerland 2016