Dark Matter

  • Ruth PöttgenEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, some essential background information for the interpretation of the data analysis presented in part IV is compiled. Section 3.1 gives a short introduction to cosmology, with more details on the derivation of the present abundance of a thermal relic in Sect. 3.2. In Sect. 3.3, some of the most striking evidence for the existence of dark matter is presented. Possible particle candidates are discussed in Sect. 3.4 and the status of the searches for generic weakly interacting massive particles is summarised in Sect. 3.5.


Dark Matter Dark Energy Cosmic Microwave Background Sterile Neutrino Dark Matter Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390. doi: 10.1016/j.physrep.2004.08.031. arXiv:hep-ph/0404175 [hep-ph]Google Scholar
  2. 2.
    Lemaître G (1931) Expansion of the universe, a homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. MNRAS 91:483–490ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Hubble E (1929) A relation between distance and radial velocity among extra-galactic nebulae. Proc Natl Acad Sci 15:168–173. doi: 10.1073/pnas.15.3.168 ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Riess AG et al (2001) The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys J 560:49–71. doi: 10.1086/322348. arXiv:astro-ph/0104455 Google Scholar
  5. 5.
    Friedman A (1999) On the curvature of space. Gen Relativ Gravit 31(12):1991–2000. doi: 10.1023/A:1026751225741. ISSN: 0001-7701Google Scholar
  6. 6.
    Beringer J et al (2012) Review of particle physics. Phys Rev D 86(1):010001. doi: 10.1103/PhysRevD.86.010001 ADSCrossRefGoogle Scholar
  7. 7.
    Bergstrom L (2000) Nonbaryonic dark matter: observational evidence and detection methods. Rep Prog Phys 63:793 (2000). doi: 10.1088/0034-4885/63/5/2r3. arXiv:hep-ph/0002126 [hep-ph]Google Scholar
  8. 8.
    Kolb EW, Turner MS (1990) The early universe. Front Phys 69:1–547ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Hooper D (2009) TASI 2008 lectures on dark matter. Technical Report, pp 709–764. arXiv:0901.4090 [hep-ph]
  10. 10.
    Salati P (2003) Quintessence and the relic density of neutralinos. Phys Lett B 571:121–131. doi: 10.1016/j.physletb.2003.07.073. arXiv:astro-ph/0207396 [astro-ph]Google Scholar
  11. 11.
    Griest K, Seckel D (1991) Three exceptions in the calculation of relic abundances. Phys Rev D 43(10):3191–3203. doi: 10.1103/PhysRevD.43.3191 ADSCrossRefGoogle Scholar
  12. 12.
    Begeman K, Broeils A, Sanders R (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not R Astron Soc 249:523ADSCrossRefGoogle Scholar
  13. 13.
    Bahcall JN, Flynn C, Gould A (1992) Local dark matter from a carefully selected sample. Astrophys J 389:234–250. doi: 10.1086/171201 ADSCrossRefGoogle Scholar
  14. 14.
    Oort JH (1932) The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull Astron Inst Neth 6:249ADSzbMATHGoogle Scholar
  15. 15.
    Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta 6:110–127ADSzbMATHGoogle Scholar
  16. 16.
    Hupp E, Roy S, Watzke M (2006) NASA Finds Direct Proof of Dark Matter. Press Release. NASA Press Release 06-297.
  17. 17.
    Clowe D et al (2006) A direct empirical proof of the existence of dark matter. Astrophys J 648:L109–L113. doi: 10.1086/508162. arXiv:astro-ph/0608407 [astro-ph]Google Scholar
  18. 18.
    Gamow G (1948) The origin of elements and the separation of galaxies. Phys Rev 74:505–506. doi: 10.1103/PhysRev.74.505.2 ADSCrossRefGoogle Scholar
  19. 19.
    Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142:419–421. doi: 10.1086/148307 ADSCrossRefGoogle Scholar
  20. 20.
    Dicke RH et al (1965) Cosmic black-body radiation. Astrophys J 142:414–419. doi: 10.1086/148306 ADSCrossRefGoogle Scholar
  21. 21.
    Ade P et al (2013) Planck 2013 results. I. Overview of products and scientific results. ArXiv Pre-Prints. doi: 10.1051/0004-6361/201321529. arXiv:1303.5062 [astro-ph.CO]
  22. 22.
    The PLANCK Collaboration/ESA (2014) PLANCK Images. Accessed August 2014
  23. 23.
    Somerville RS et al (2004) Cosmic variance in the great observatories origins deep survey. Astrophys J 600:L171. doi: 10.1086/378628. arXiv:astro-ph/0309071 [astro-ph]Google Scholar
  24. 24.
    Ade P et al (2013) Planck 2013 results. XV. CMB power spectra and likelihood. ArXiv Pre-Prints. arXiv:1303.5075 [astro-ph.CO]
  25. 25.
    Komatsu E et al (2011) Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys J Suppl Ser 192(2):18. arXiv:1001.4538 [astro-ph.CO]Google Scholar
  26. 26.
    Milgrom M (1983) A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J 270:365–370. doi: 10.1086/161130 ADSCrossRefGoogle Scholar
  27. 27.
    Moffat J (2006) Scalar-tensor-vector gravity theory. JCAP 0603:004. doi: 10.1088/1475-7516/2006/03/004. arXiv:gr-qc/0506021 [gr-qc]Google Scholar
  28. 28.
    Toth VT (2010) Cosmological consequences of modified gravity (MOG). ArXiv Pre-Prints. arXiv:1011.5174 [gr-qc]
  29. 29.
    Dodelson S, Widrow LM (1994) Sterile-neutrinos as dark matter. Phys Rev Lett 72:17–20. doi: 10.1103/PhysRevLett.72.17. arXiv:hep-ph/9303287 [hep-ph]Google Scholar
  30. 30.
    Abazajian K, Fuller GM, Patel M (2001) Sterile neutrino hot, warm, and cold dark matter. Phys Rev D 64:023501. doi: 10.1103/PhysRevD.64.023501. arXiv:astro-ph/0101524 [astro-ph]
  31. 31.
    Falk T, Olive KA, Srednicki M (1994) Heavy sneutrinos as dark matter. Phys Lett B 339:248–251. doi: 10.1016/0370-2693(94)90639-4. arXiv:hep-ph/9409270 [hep-ph]Google Scholar
  32. 32.
    Covi L, Kim JE, Roszkowski L (1991) Axinos as cold dark matter. Phys Rev Lett 82:4180–4183. doi: 10.1103/PhysRevLett.82.4180. arXiv:hep-ph/9905212 [hep-ph]Google Scholar
  33. 33.
    Covi L et al (2001) Axinos as dark matter. JHEP 0105:033. doi: 10.1088/1126-6708/2001/05/033. arXiv:hep-ph/0101009 [hep-ph]Google Scholar
  34. 34.
    Covi L et al (2004) Axino dark matter and the CMSSM. JHEP 0406:003. doi: 10.1088/1126-6708/2004/06/003. arXiv:hep-ph/0402240 [hep-ph]Google Scholar
  35. 35.
    Boehm C, Ensslin T, Silk J (2004) Can annihilating dark matter be lighter than a few GeVs? J Phys G 30:279–286. doi: 10.1088/0954-3899/30/3/004. arXiv:astro-ph/0208458 [astro-ph]Google Scholar
  36. 36.
    Boehm C, Fayet P (2004) Scalar dark matter candidates. Nucl Phys B 683:219–263. doi: 10.1016/j.nuclphysb.2004.01.015. arXiv:hep-ph/0305261 [hep-ph]Google Scholar
  37. 37.
    Birkedal-Hansen A, Wacker JG (2004) Scalar dark matter from theory space. Phys Rev D 69:065022. doi: 10.1103/PhysRevD.69.065022. arXiv:hep-ph/0306161 [hep-ph]
  38. 38.
    Cheng H-C, Low I (2003) TeV symmetry and the little hierarchy problem. JHEP 0309:051. doi: 10.1088/1126-6708/2003/09/051. arXiv:hep-ph/0308199 [hep-ph]Google Scholar
  39. 39.
    Green AM (2012) Astrophysical uncertainties on direct detection experiments. Mod Phys Lett A 27(1230004):30004. doi: 10.1142/S0217732312300042. arXiv:1112.0524 [astro-ph.CO]Google Scholar
  40. 40.
    Arneodo F (2013) Dark matter searches. ArXiv Pre-Prints (2013). arXiv:1301.0441 [astro-ph.IM]
  41. 41.
    Bernabei R et al (2013) Final model independent result of DAMA/LIBRA-phase1. Eur Phys J C 73:2648. doi: 10.1140/epjc/s10052-013-2648-7. arXiv:1308.5109 [astro-ph.GA]
  42. 42.
    Aalseth CE et al (2013) CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. PRD 88(1):012002. doi: 10.1103/PhysRevD.88.012002. arXiv:1208.5737 [astro-ph.CO]
  43. 43.
    Angloher G et al (2012) Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C 72:1971. doi: 10.1140/epjc/s10052-012-1971-8. arXiv:1109.0702 [astro-ph.CO]
  44. 44.
    CDMS Collaboration (2013). Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett 111:251301. doi: 10.1103/PhysRevLett.111.251301. arXiv:1304.4279 [hep-ex]
  45. 45.
    Aprile E et al (2012) Dark matter results from 225 live days of XENON100 data. Phys Rev Lett 109(18):181301. doi: 10.1103/PhysRevLett.109.181301. arXiv:1207.5988 [astro-ph.CO]
  46. 46.
    Akerib D et al (2014) First results from the LUX dark matter experiment at the sanford underground research facility. Phys Rev Lett 112:091303. doi: 10.1103/PhysRevLett.112.091303. arXiv:1310.8214 [astro-ph.CO]
  47. 47.
    Agnese R et al (2014) Search for low-mass wimps with superCDMS. Phys Rev Lett 112:241302. doi: 10.1103/PhysRevLett.112.241302. arXiv:1402.7137 [hep-ex]
  48. 48.
    Armengaud E et al (2011) Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Phys Lett B 702(5):329–335. ISSN: 0370-2693. Google Scholar
  49. 49.
    Schumann M (2014) Dual-phase liquid xenon detectors for dark matter searches. JINST 9:C08004. doi: 10.1088/1748-0221/9/08/C08004. arXiv:1405.7600 [astro-ph.IM]Google Scholar
  50. 50.
    CDMS Collaboration (2010) Dark matter search results from the CDMS II experiment. Science 327:1619. doi: 10.1126/science.1186112. arXiv:0912.3592 [astro-ph.CO]
  51. 51.
    CDMS Collaboration (2012) Search for annual modulation in low-energy CDMS-II data. ArXiv Pre-Prints (2012). arXiv:1203.1309 [astro-ph.CO]
  52. 52.
    Aprile E et al (2013) Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys Rev Lett 111(2)L021301. doi: 10.1103/PhysRevLett.111.021301. arXiv:1301.6620 [astro-ph.CO]
  53. 53.
    Felizardo M et al (2012) Final analysis and results of the phase II SIMPLE dark matter search. Phys Rev Lett 108(20):201302. doi: 10.1103/PhysRevLett.108.201302. arXiv:1106.3014
  54. 54.
    Archambault S et al (2012) Constraints on low-mass WIMP interactions on 19F from PICASSO. Phys Lett B 711:153–161. doi: 10.1016/j.physletb.2012.03.078. arXiv:1202.1240 [hep-ex]Google Scholar
  55. 55.
    Behnke E et al (2012) First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site. Phys Rev D 86(5):052001. doi: 10.1103/PhysRevD.86.052001. arXiv:1204.3094 [astro-ph.CO]
  56. 56.
    Kim SC et al (2012) New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors. Phys Rev Lett 108(18):181301. doi: 10.1103/PhysRevLett.108.181301. arXiv:1204.2646 [astro-ph.CO]
  57. 57.
    The IceCube Collaboration (2012). Search for dark matter annihilations in the Sun with the 79-string IceCube detector. ArXiv Pre-Prints. arXiv:1212.4097 [astro-ph.HE]
  58. 58.
    Abbasi R et al (2010) Calibration and characterization of the IceCube photomultiplier tube. Nucl Instrum Meth A 618:139–152. doi: 10.1016/j.nima.2010.03.102. arXiv:1002.2442 [astro-ph.IM]Google Scholar
  59. 59.
    Fukuda S et al (2003) The Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 501(2–3):418–462. ISSN: 0168-9002
  60. 60.
    Ackermann M et al (2014) Dark matter constraints from observations of 25 Milky Way satellite galaxies with the fermi large area telescope. Phys Rev D 89:042001. doi: 10.1103/PhysRevD.89.042001. arXiv:1310.0828 [astro-ph.HE]
  61. 61.
    Weniger C (2012) A tentative gamma-ray line from dark matter annihilation at the fermi large area telescope. JCAP 1208:007. doi: 10.1088/1475-7516/2012/08/007. arXiv:1204.2797 [hep-ph]Google Scholar
  62. 62.
    Weniger C (2013) Gamma-ray lines in the Fermi-LAT data? ArXiv Pre-Prints. arXiv:1303.1798 [astro-ph.HE]
  63. 63.
    Adriani O et al (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458:607–609. doi: 10.1038/nature07942. arXiv:0810.4995 [astro-ph]Google Scholar
  64. 64.
    Ackermann M et al (2012) Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. Phys Rev Lett 108(1):011103. doi: 10.1103/PhysRevLett.108.011103. arXiv:1109.0521 [astro-ph.HE]
  65. 65.
    Aguilar M et al (2014) Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 113(12):121102. doi: 10.1103/PhysRevLett.113.121102.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.FysikumStockholms Universitet (SU)StockholmSweden

Personalised recommendations