Skip to main content

The Standard Model of Particle Physics

  • Chapter
  • First Online:
Search for Dark Matter with ATLAS

Part of the book series: Springer Theses ((Springer Theses))

  • 424 Accesses

Abstract

This chapter will review the current theoretical model of elementary particle physics, based largely on references [14]. Section 2.1 will give an overview of the particle content of this Standard Model of particle physics as well as the interactions between them. The set of observed particles has recently been completed by the discovery of a particle which so far appears to be compatible with the long searched for Higgs-boson, which had been predicted as part of the mechanism generating masses of the fundamental particles via spontaneous symmetry breaking. The electroweak interaction and the Higgs-mechanism are discussed in Sect. 2.2, followed by a brief overview of the strong interaction in Sect. 2.3. Despite of being one of the most successful theories in the history of science, the Standard Model has a number of shortcomings that will be highlighted in Sect. 2.4, as one of them is the motivation for the analysis documented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The isospin was originally introduced to treat neutron and proton as the same particles (nucleons) with different isospin orientation (\(\pm 1/2\)). In the quark model, the isospin of the nucleon results from the isospin of its constituents.

  2. 2.

    In case of the electromagnetic force it is a pure vector interaction.

  3. 3.

    A \(V+A\)—theory would describe an interaction only right-handed particles take part in.

References

  1. Griffiths D (1987) Introduction to elementary particles. Wiley, New York

    Book  MATH  Google Scholar 

  2. Schmueser P (2013) Feynman-Graphen und Eichtheorien für Experimentalphysiker. 2nd edn. Springer, Heidelberg

    Google Scholar 

  3. Povh B, Rith K, Scholz Ch, Zetsche F, Rodejohann W (2013) Teilchen und Kerne: Eine Einfuehrung in die physikalischen Konzepte; 9th edn. Springer, Spektrum

    Google Scholar 

  4. Beringer J et al (2012) Review of particle physics. Phys Rev D 86:010001. doi:10.1103/PhysRevD.86.010001

  5. Ahmad QR et al (2002) Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys Rev Lett 89:011301. doi:10.1103/PhysRevLett.89.011301

  6. Kraus C et al (2005) Final results from phase II of the Mainz neutrino mass search in tritium beta decay. Eur Phys J C40:447–468. doi:10.1140/epjc/s2005-02139-7. arXiv:hep-ex/0412056 [hep-ex]

  7. Aseev VN et al (2011) An upper limit on electron antineutrino mass from Troitsk experiment. Phys Rev D84:112003. doi:10.1103/PhysRevD.84.112003. arXiv:1108.5034 [hep-ex]

  8. Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509. doi:10.1103/PhysRevLett.13.508

    Google Scholar 

  9. Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett. 13:321–323. doi:10.1103/PhysRevLett.13.321

    Google Scholar 

  10. Guralnik GS, Hagen CR, Kibble TWB (1964) Global conservation laws and massless particles. Phys Rev Lett. 13:585–587. doi:10.1103/PhysRevLett.13.585

    Google Scholar 

  11. The ATLAS Collaboration (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett. B716:1–29. doi:10.1016/j.physletb.2012.08.020. arXiv:1207.7214 [hep-ex]

    Google Scholar 

  12. The CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett. B716:30–61. doi:10.1016/j.physletb.2012.08.021. arXiv:1207.7235 [hep-ex]

    Google Scholar 

  13. Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264–1266. doi:10.1103/PhysRevLett.19.1264

    Google Scholar 

  14. Glashow SL (1961) Partial symmetries of weak interactions. Nucl Phys 22:579–588. doi:10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  15. Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev. 127:965–970. doi:10.1103/PhysRev.127.965

    Google Scholar 

  16. Maxwell JC (1865) A dynamical theory of the electromagnetic field. In: Philosophical transactions of the royal society of London. vol 155, pp. 459–512. doi:10.1098/rstl.1865.0008. eprint: http://rstl.royalsocietypublishing.org/content/155/459.full.pdf+html. http://rstl.royalsocietypublishing.org/content/155/459.short

  17. Hasert F et al (1973) Observation of neutrino like interactions without muon or electron in the gargamelle neutrino experiment. Phys Lett B 46:138–140. doi:10.1016/0370-2693(73)90499-1

    Article  ADS  Google Scholar 

  18. Kobayashi M, Maskawa T (1973) CP Violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652–657. doi:10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  19. Cabibbo N (1963) Unitary symmetry and leptonic decays. Phys Rev Lett 10:531–533. doi:10.1103/PhysRevLett.10.531

    Google Scholar 

  20. Gell-Mann M (1956) The interpretation of the new particles as displaced charge multiplets. Il Nuovo Cimento. 4.2:848–866. doi:10.1007/BF02748000. ISSN: 0029-6341

    Google Scholar 

  21. Nakano T, Nishijima K (1953) Charge independence for V-particles. Prog Theor Phys. 10.5:581–582. doi:10.1143/PTP.10.581. eprint: http://ptp.oxfordjournals.org/content/10/5/581.full.pdf+html.http://ptp.oxfordjournals.org/content/10/5/581.short

    Google Scholar 

  22. Arnison G et al (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at s**(1/2) = 540-GeV. Phys Lett B 122:103–116. doi:10.1016/0370-2693(83)91177-2

    Article  ADS  Google Scholar 

  23. Arnison G et al (1983) EXperimental observation of lepton pairs of invariant mass around 95-GeV/c**2 at the CERN SPS collider. Phys Lett B 126:398–410. doi:10.1016/0370-2693(83)90188-0

    Article  ADS  Google Scholar 

  24. Gell-Mann M (1964) A schematic model of baryons and mesons. Phys Lett 8:214–215. doi:10.1016/S0031-9163(64)92001-3

    Article  ADS  MathSciNet  Google Scholar 

  25. Kendall HW, Panofsky WKH (1971) The structure of the proton and the neutron. Sci Am. 224.6:60–77. http://www.nature.com/ scientificamerican/journal/v224/n6/pdf/scientificamerican0671-60.pdf

  26. Greenberg OW (1964) Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys Rev Lett. 13:598–602. doi:10.1103/PhysRevLett.13.598

    Google Scholar 

  27. Aubert JJ et al (1974) Experimental observation of a heavy particle J. Phys Rev Lett. 33(23):1404–1406. doi:10.1103/PhysRevLett.33.1404

    Google Scholar 

  28. Augustin JE et al (1974) Discovery of a narrow resonancein \(e^{+}e^{-}\) annihilation. Phys Rev Lett. 33(23):1406–1408. doi:10.1103/PhysRevLett.33.1406

    Google Scholar 

  29. Abe F et al (1995) Observation of top quark production in pp collisions with the collider detector at fermilab. Phys Rev Lett. 74(14):2626–2631. doi:10.1103/PhysRevLett.74.2626

  30. Abachi S et al (1995) Observation of the top quark. Phys Rev Lett. 74(14):2632–2637. doi:10.1103/PhysRevLett.74.2632

    Google Scholar 

  31. Jacob MRM, Landshoff PV (1980) The inner structure of the proton. Sci Am. 3:66–75

    Google Scholar 

  32. Arkani-Hamed N, Dimopoulos S, Dvali G (1998) The Hierarchy problem and new dimensions at a millimeter. Phys Lett. B429:263–272. doi:10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315 [hep-ph]

    Google Scholar 

  33. Randall L, Sundrum R (1999) A Large mass hierarchy from a small extra dimension. Phys Rev Lett. 83:3370–3373. doi:10.1103/PhysRevLett.83.3370. arXiv:hep-ph/9905221 [hep-ph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Pöttgen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pöttgen, R. (2016). The Standard Model of Particle Physics. In: Search for Dark Matter with ATLAS. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41045-6_2

Download citation

Publish with us

Policies and ethics