The Standard Model of Particle Physics

  • Ruth PöttgenEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter will review the current theoretical model of elementary particle physics, based largely on references [1, 2, 3, 4]. Section 2.1 will give an overview of the particle content of this Standard Model of particle physics as well as the interactions between them. The set of observed particles has recently been completed by the discovery of a particle which so far appears to be compatible with the long searched for Higgs-boson, which had been predicted as part of the mechanism generating masses of the fundamental particles via spontaneous symmetry breaking. The electroweak interaction and the Higgs-mechanism are discussed in Sect. 2.2, followed by a brief overview of the strong interaction in Sect. 2.3. Despite of being one of the most successful theories in the history of science, the Standard Model has a number of shortcomings that will be highlighted in Sect. 2.4, as one of them is the motivation for the analysis documented in this work.


Gauge Boson Deep Inelastic Scattering Electroweak Interaction Universal Extra Dimension Universal Extra Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Griffiths D (1987) Introduction to elementary particles. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  2. 2.
    Schmueser P (2013) Feynman-Graphen und Eichtheorien für Experimentalphysiker. 2nd edn. Springer, HeidelbergGoogle Scholar
  3. 3.
    Povh B, Rith K, Scholz Ch, Zetsche F, Rodejohann W (2013) Teilchen und Kerne: Eine Einfuehrung in die physikalischen Konzepte; 9th edn. Springer, SpektrumGoogle Scholar
  4. 4.
    Beringer J et al (2012) Review of particle physics. Phys Rev D 86:010001. doi: 10.1103/PhysRevD.86.010001
  5. 5.
    Ahmad QR et al (2002) Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys Rev Lett 89:011301. doi: 10.1103/PhysRevLett.89.011301
  6. 6.
    Kraus C et al (2005) Final results from phase II of the Mainz neutrino mass search in tritium beta decay. Eur Phys J C40:447–468. doi: 10.1140/epjc/s2005-02139-7. arXiv:hep-ex/0412056 [hep-ex]
  7. 7.
    Aseev VN et al (2011) An upper limit on electron antineutrino mass from Troitsk experiment. Phys Rev D84:112003. doi: 10.1103/PhysRevD.84.112003. arXiv:1108.5034 [hep-ex]
  8. 8.
    Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509. doi: 10.1103/PhysRevLett.13.508 Google Scholar
  9. 9.
    Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett. 13:321–323. doi: 10.1103/PhysRevLett.13.321 Google Scholar
  10. 10.
    Guralnik GS, Hagen CR, Kibble TWB (1964) Global conservation laws and massless particles. Phys Rev Lett. 13:585–587. doi: 10.1103/PhysRevLett.13.585 Google Scholar
  11. 11.
    The ATLAS Collaboration (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett. B716:1–29. doi: 10.1016/j.physletb.2012.08.020. arXiv:1207.7214 [hep-ex]Google Scholar
  12. 12.
    The CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett. B716:30–61. doi: 10.1016/j.physletb.2012.08.021. arXiv:1207.7235 [hep-ex]Google Scholar
  13. 13.
    Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264–1266. doi: 10.1103/PhysRevLett.19.1264 Google Scholar
  14. 14.
    Glashow SL (1961) Partial symmetries of weak interactions. Nucl Phys 22:579–588. doi: 10.1016/0029-5582(61)90469-2 CrossRefGoogle Scholar
  15. 15.
    Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev. 127:965–970. doi: 10.1103/PhysRev.127.965 Google Scholar
  16. 16.
    Maxwell JC (1865) A dynamical theory of the electromagnetic field. In: Philosophical transactions of the royal society of London. vol 155, pp. 459–512. doi: 10.1098/rstl.1865.0008. eprint:
  17. 17.
    Hasert F et al (1973) Observation of neutrino like interactions without muon or electron in the gargamelle neutrino experiment. Phys Lett B 46:138–140. doi: 10.1016/0370-2693(73)90499-1 ADSCrossRefGoogle Scholar
  18. 18.
    Kobayashi M, Maskawa T (1973) CP Violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652–657. doi: 10.1143/PTP.49.652 ADSCrossRefGoogle Scholar
  19. 19.
    Cabibbo N (1963) Unitary symmetry and leptonic decays. Phys Rev Lett 10:531–533. doi: 10.1103/PhysRevLett.10.531 Google Scholar
  20. 20.
    Gell-Mann M (1956) The interpretation of the new particles as displaced charge multiplets. Il Nuovo Cimento. 4.2:848–866. doi: 10.1007/BF02748000. ISSN: 0029-6341Google Scholar
  21. 21.
    Nakano T, Nishijima K (1953) Charge independence for V-particles. Prog Theor Phys. 10.5:581–582. doi: 10.1143/PTP.10.581. eprint: Google Scholar
  22. 22.
    Arnison G et al (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at s**(1/2) = 540-GeV. Phys Lett B 122:103–116. doi: 10.1016/0370-2693(83)91177-2 ADSCrossRefGoogle Scholar
  23. 23.
    Arnison G et al (1983) EXperimental observation of lepton pairs of invariant mass around 95-GeV/c**2 at the CERN SPS collider. Phys Lett B 126:398–410. doi: 10.1016/0370-2693(83)90188-0 ADSCrossRefGoogle Scholar
  24. 24.
    Gell-Mann M (1964) A schematic model of baryons and mesons. Phys Lett 8:214–215. doi: 10.1016/S0031-9163(64)92001-3 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kendall HW, Panofsky WKH (1971) The structure of the proton and the neutron. Sci Am. 224.6:60–77. scientificamerican/journal/v224/n6/pdf/scientificamerican0671-60.pdf
  26. 26.
    Greenberg OW (1964) Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys Rev Lett. 13:598–602. doi: 10.1103/PhysRevLett.13.598 Google Scholar
  27. 27.
    Aubert JJ et al (1974) Experimental observation of a heavy particle J. Phys Rev Lett. 33(23):1404–1406. doi: 10.1103/PhysRevLett.33.1404 Google Scholar
  28. 28.
    Augustin JE et al (1974) Discovery of a narrow resonancein \(e^{+}e^{-}\) annihilation. Phys Rev Lett. 33(23):1406–1408. doi: 10.1103/PhysRevLett.33.1406 Google Scholar
  29. 29.
    Abe F et al (1995) Observation of top quark production in pp collisions with the collider detector at fermilab. Phys Rev Lett. 74(14):2626–2631. doi: 10.1103/PhysRevLett.74.2626
  30. 30.
    Abachi S et al (1995) Observation of the top quark. Phys Rev Lett. 74(14):2632–2637. doi: 10.1103/PhysRevLett.74.2632 Google Scholar
  31. 31.
    Jacob MRM, Landshoff PV (1980) The inner structure of the proton. Sci Am. 3:66–75Google Scholar
  32. 32.
    Arkani-Hamed N, Dimopoulos S, Dvali G (1998) The Hierarchy problem and new dimensions at a millimeter. Phys Lett. B429:263–272. doi: 10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315 [hep-ph]Google Scholar
  33. 33.
    Randall L, Sundrum R (1999) A Large mass hierarchy from a small extra dimension. Phys Rev Lett. 83:3370–3373. doi: 10.1103/PhysRevLett.83.3370. arXiv:hep-ph/9905221 [hep-ph]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.FysikumStockholms Universitet (SU)StockholmSweden

Personalised recommendations