Advertisement

Results and Interpretation

  • Ruth PöttgenEmail author
Chapter
  • 286 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, first, the Standard Model background estimation obtained in Chap.  14 is compared to the event numbers observed in data for each signal region and model-independent limits on the cross section for new physics will be derived in Sect. 15.1. In Sect. 15.2 the signal inputs to the limit calculation are described, in particular, the effect of different sources of experimental and theoretical uncertainties is discussed.

Keywords

Dark Matter Systematic Uncertainty Signal Region Theoretical Uncertainty Direct Detection Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wenninger J (2013) Energy calibration of the LHC beams at 4 TeV. Technical report. CERN-ATS-2013-040. Geneva: CERNGoogle Scholar
  2. 2.
    Whalley MR, Bourilkov D, Group RC (2005) The Les Houches accord PDFs (LHAPDF) and LHAGLUE. ArXiv Pre-Prints. arXiv:hep-ph/0508110 [hep-ph]
  3. 3.
    Botje M et al (2011) The PDF4LHC working group interim recommendations. ArXiv Pre-Prints. arXiv:1101.0538 [hep-ph]
  4. 4.
    Campbell JM, Huston J, Stirling W (2007) Hard interactions of quarks and gluons: a primer for LHC physics. Rep Prog Phys 70:89. doi: 10.1088/0034-4885/70/1/R02. arXiv:hep-ph/0611148 [hep-ph]Google Scholar
  5. 5.
    Skands PZ (2010) Tuning Monte Carlo generators: the Perugia tunes. Phys Rev D82:074018. doi: 10.1103/PhysRevD.82.074018. arXiv:1005.3457 [hep-ph]
  6. 6.
    Abdallah J et al (2013) Search for new phenomena with mono-jet plus missing transverse energy signature in proton-proton collisions at \(\sqrt{s}\) = 8TeV with the ATLAS detector. Technical report. ATL-COM-PHYS-2013-1578. Geneva: CERNGoogle Scholar
  7. 7.
    Goodman J et al (2010) Constraints on dark matter from colliders. Phys Rev D82:116010. doi: 10.1103/PhysRevD.82.116010. arXiv:1008.1783 [hep-ph]
  8. 8.
    Komatsu E et al (2011) Seven-year Wilkinson microwave anisotropy probe (WMAP) Observations: cosmological interpretation. Astrophys J Suppl Ser 192.2:18. arXiv:1001.4538 [astro-ph.CO]. http://stacks.iop.org/0067-0049/192/i=2/a=18
  9. 9.
    The PLANCK collaboration (2013) Planck 2013 results. XVI. Cosmological parameters. ArXiv Pre-Prints. arXiv:1303.5076 [astro-ph.CO]
  10. 10.
    Tait T, Private communicationGoogle Scholar
  11. 11.
    The ATLAS collaboration (2013) Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 1304:075. doi: 10.1007/JHEP04(2013)075. arXiv:1210.4491 [hep-ex]
  12. 12.
    The ATLAS Collaboration (2014) Sensitivity to WIMP dark matter in the final states containing jets and missing transverse momentum with the ATLAS detector at 14 TeV LHC. Technical report. ATL-PHYS-PUB-2014-007. Geneva: CERNGoogle Scholar
  13. 13.
    CDMS Collaboration (2013) Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett 111:251301. doi: 10.1103/PhysRevLett.111.251301. arXiv:1304.4279 [hep-ex]
  14. 14.
    Agnese R et al (2014) Search for low-mass WIMPs with SuperCDMS. Phys Rev Lett 112:241302. doi: 10.1103/PhysRevLett.112.241302. arXiv:1402.7137 [hep-ex]
  15. 15.
    Aalseth CE et al (2013) CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. PRD 88.1:012002. doi: 10.1103/PhysRevD.88.012002. arXiv:1208.5737 [astro-ph.CO]
  16. 16.
    Bernabei R et al (2008) First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur Phys J C56:333–355. doi: 10.1140/epjc/s10052-008-0662-y. arXiv:0804.2741 [astro-ph]Google Scholar
  17. 17.
    Savage C et al (2009) Compatibility of DAMA/LIBRA dark matter detection with other searches. JCAP 0904:010. doi: 10.1088/1475-7516/2009/04/010. arXiv:0808.3607 [astro-ph]Google Scholar
  18. 18.
    Angloher G et al (2012) Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C 72:1971. doi: 10.1140/epjc/s10052-012-1971-8. arXiv:1109.0702 [astro-ph.CO]
  19. 19.
    Akerib D et al (2014) First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett 112:091303. doi: 10.1103/PhysRevLett.112.091303. arXiv:1310.8214 [astro-ph.CO]
  20. 20.
    Aprile E et al (2012) Dark matter results from 225 live days of XENON100 data. Phys Rev Lett 109.18:181301. doi: 10.1103/PhysRevLett.109.181301. arXiv:1207.5988 [astro-ph.CO]
  21. 21.
    The CMS collaboration (2014) Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s}\) = 8 TeV. ArXiv Pre-Prints. arXiv:1408.3583 [hep-ex]
  22. 22.
    Gaitskell RJ, Mandic V (2014) The dark matter community website. http://dmtools.brown.edu/. Accessed July 2014
  23. 23.
    Aprile E et al (2013) Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys Rev Lett 111.2:021301. doi: 10.1103/PhysRevLett.111.021301. arXiv:1301.6620 [astro-ph.CO]
  24. 24.
    Behnke E et al (2012) First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site. Phys Rev D 86.5:052001. doi: 10.1103/PhysRevD.86.052001. arXiv:1204.3094 [astro-ph.CO]
  25. 25.
    Felizardo M et al (2012) Final analysis and results of the phase II SIMPLE dark matter search. Phys Rev Lett 108.20:201302. doi: 10.1103/PhysRevLett.108.201302. arXiv:1106.3014
  26. 26.
    Archambault S et al (2012) Constraints on low-mass WIMP interactions on 19F from PICASSO. Phys Lett B711:153–161. doi: 10.1016/j.physletb.2012.03.078. arXiv:1202.1240 [hep-ex]Google Scholar
  27. 27.
    The Super-Kamiokande collaboration (2011) An indirect search for weakly interacting massive particles in the sun using 3109.6 days of upward-going muons in Super-Kamiokande. Astrophys J 742:78. doi: 10.1088/0004-637X/742/2/78. arXiv:1108.3384 [astro-ph.HE]Google Scholar
  28. 28.
    The IceCube collaboration (2012) Search for dark matter annihilations in the sun with the 79-string IceCube detector. ArXiv Pre-Prints. arXiv:1212.4097 [astro-ph.HE]
  29. 29.
    The ATLAS collaboration (2014) Search for dark matter in events with a hadronically decaying W or Z Boson and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. Phys Rev Lett 112:041802. doi: 10.1103/PhysRevLett.112.041802
  30. 30.
    The ATLAS collaboration (2014) Search for new particles in events with one lepton and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. JHEP 1409:037. doi: 10.1007/JHEP09(2014)037. arXiv:1407.7494 [hep-ex]
  31. 31.
    The ATLAS collaboration (2014) Search for dark matter in events with a Z Boson and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. Phys Rev D 90:012004. doi: 10.1103/PhysRevD.90.012004
  32. 32.
    The ATLAS collaboration (2015) Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. Phys Rev D 91:012008. doi: 10.1103/PhysRevD.91.012008
  33. 33.
    The ATLAS collaboration (2015) Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector. Eur Phys J C 75.2:92. issn:1434-6044. doi: 10.1140/epjc/s10052-015-3306-z
  34. 34.
    Ackermann M et al (2014) Dark matter constraints from observations of 25 Milky Way satellite galaxies with the fermi large area telescope. Phys Rev D89:042001. doi: 10.1103/PhysRevD.89.042001. arXiv:1310.0828 [astro-ph.HE]
  35. 35.
    Cirelli M et al (2011) PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. JCAP 1103:051. doi: 10.1088/1475-7516/2012/10/E01, doi: 10.1088/1475-7516/2011/03/051. arXiv:1012.4515 [hep-ph]Google Scholar
  36. 36.
    Fox PJ et al (2012) Missing energy signatures of dark matter at the LHC. Phys Rev D85:056011. doi: 10.1103/PhysRevD.85.056011. arXiv:1109.4398 [hep-ph]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.FysikumStockholms Universitet (SU)StockholmSweden

Personalised recommendations