Skip to main content

Results and Interpretation

  • Chapter
  • First Online:
  • 398 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, first, the Standard Model background estimation obtained in Chap. 14 is compared to the event numbers observed in data for each signal region and model-independent limits on the cross section for new physics will be derived in Sect. 15.1. In Sect. 15.2 the signal inputs to the limit calculation are described, in particular, the effect of different sources of experimental and theoretical uncertainties is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(Z(\nu \bar{\nu })\) and \(W(\mu \nu )\) from \(W(\mu \nu )\), \(Z(\nu \bar{\nu })\),\(W(\tau \nu )\) and \(W(e\nu )\) from \(W(e\nu )\).

  2. 2.

    The scales are defined event by event in MadGraph as the central \(m_{\text {T}}^2\) scale after \(k_{T}\)-clustering of the event, i.e. in the case of pair production it is the geometric mean of \(m^2 + p_{\text {T}}^{2}\) for each particle.

  3. 3.

    The most recent measurement of the relic density is the one from PLANCK [9], however, the slightly different value of \(\Omega h^2\) will not cause a visible change of the line in these plots [10].

  4. 4.

    For C1, therefore, the relic density line does not lie within the plot range any more, this is indicated by the green arrow.

  5. 5.

    The actual maximum will most likely be between 1 and 3 TeV and will be at different values for the different WIMP masses, but no samples for mediator masses between 1 and 3 TeV were available at the time of writing.

References

  1. Wenninger J (2013) Energy calibration of the LHC beams at 4 TeV. Technical report. CERN-ATS-2013-040. Geneva: CERN

    Google Scholar 

  2. Whalley MR, Bourilkov D, Group RC (2005) The Les Houches accord PDFs (LHAPDF) and LHAGLUE. ArXiv Pre-Prints. arXiv:hep-ph/0508110 [hep-ph]

  3. Botje M et al (2011) The PDF4LHC working group interim recommendations. ArXiv Pre-Prints. arXiv:1101.0538 [hep-ph]

  4. Campbell JM, Huston J, Stirling W (2007) Hard interactions of quarks and gluons: a primer for LHC physics. Rep Prog Phys 70:89. doi:10.1088/0034-4885/70/1/R02. arXiv:hep-ph/0611148 [hep-ph]

    Google Scholar 

  5. Skands PZ (2010) Tuning Monte Carlo generators: the Perugia tunes. Phys Rev D82:074018. doi:10.1103/PhysRevD.82.074018. arXiv:1005.3457 [hep-ph]

  6. Abdallah J et al (2013) Search for new phenomena with mono-jet plus missing transverse energy signature in proton-proton collisions at \(\sqrt{s}\) = 8TeV with the ATLAS detector. Technical report. ATL-COM-PHYS-2013-1578. Geneva: CERN

    Google Scholar 

  7. Goodman J et al (2010) Constraints on dark matter from colliders. Phys Rev D82:116010. doi:10.1103/PhysRevD.82.116010. arXiv:1008.1783 [hep-ph]

  8. Komatsu E et al (2011) Seven-year Wilkinson microwave anisotropy probe (WMAP) Observations: cosmological interpretation. Astrophys J Suppl Ser 192.2:18. arXiv:1001.4538 [astro-ph.CO]. http://stacks.iop.org/0067-0049/192/i=2/a=18

  9. The PLANCK collaboration (2013) Planck 2013 results. XVI. Cosmological parameters. ArXiv Pre-Prints. arXiv:1303.5076 [astro-ph.CO]

  10. Tait T, Private communication

    Google Scholar 

  11. The ATLAS collaboration (2013) Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 1304:075. doi:10.1007/JHEP04(2013)075. arXiv:1210.4491 [hep-ex]

  12. The ATLAS Collaboration (2014) Sensitivity to WIMP dark matter in the final states containing jets and missing transverse momentum with the ATLAS detector at 14 TeV LHC. Technical report. ATL-PHYS-PUB-2014-007. Geneva: CERN

    Google Scholar 

  13. CDMS Collaboration (2013) Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett 111:251301. doi:10.1103/PhysRevLett.111.251301. arXiv:1304.4279 [hep-ex]

  14. Agnese R et al (2014) Search for low-mass WIMPs with SuperCDMS. Phys Rev Lett 112:241302. doi:10.1103/PhysRevLett.112.241302. arXiv:1402.7137 [hep-ex]

  15. Aalseth CE et al (2013) CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. PRD 88.1:012002. doi:10.1103/PhysRevD.88.012002. arXiv:1208.5737 [astro-ph.CO]

  16. Bernabei R et al (2008) First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur Phys J C56:333–355. doi:10.1140/epjc/s10052-008-0662-y. arXiv:0804.2741 [astro-ph]

    Google Scholar 

  17. Savage C et al (2009) Compatibility of DAMA/LIBRA dark matter detection with other searches. JCAP 0904:010. doi:10.1088/1475-7516/2009/04/010. arXiv:0808.3607 [astro-ph]

    Google Scholar 

  18. Angloher G et al (2012) Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C 72:1971. doi:10.1140/epjc/s10052-012-1971-8. arXiv:1109.0702 [astro-ph.CO]

  19. Akerib D et al (2014) First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett 112:091303. doi:10.1103/PhysRevLett.112.091303. arXiv:1310.8214 [astro-ph.CO]

  20. Aprile E et al (2012) Dark matter results from 225 live days of XENON100 data. Phys Rev Lett 109.18:181301. doi:10.1103/PhysRevLett.109.181301. arXiv:1207.5988 [astro-ph.CO]

  21. The CMS collaboration (2014) Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s}\) = 8 TeV. ArXiv Pre-Prints. arXiv:1408.3583 [hep-ex]

  22. Gaitskell RJ, Mandic V (2014) The dark matter community website. http://dmtools.brown.edu/. Accessed July 2014

  23. Aprile E et al (2013) Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys Rev Lett 111.2:021301. doi:10.1103/PhysRevLett.111.021301. arXiv:1301.6620 [astro-ph.CO]

  24. Behnke E et al (2012) First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site. Phys Rev D 86.5:052001. doi:10.1103/PhysRevD.86.052001. arXiv:1204.3094 [astro-ph.CO]

  25. Felizardo M et al (2012) Final analysis and results of the phase II SIMPLE dark matter search. Phys Rev Lett 108.20:201302. doi:10.1103/PhysRevLett.108.201302. arXiv:1106.3014

  26. Archambault S et al (2012) Constraints on low-mass WIMP interactions on 19F from PICASSO. Phys Lett B711:153–161. doi:10.1016/j.physletb.2012.03.078. arXiv:1202.1240 [hep-ex]

    Google Scholar 

  27. The Super-Kamiokande collaboration (2011) An indirect search for weakly interacting massive particles in the sun using 3109.6 days of upward-going muons in Super-Kamiokande. Astrophys J 742:78. doi:10.1088/0004-637X/742/2/78. arXiv:1108.3384 [astro-ph.HE]

    Google Scholar 

  28. The IceCube collaboration (2012) Search for dark matter annihilations in the sun with the 79-string IceCube detector. ArXiv Pre-Prints. arXiv:1212.4097 [astro-ph.HE]

  29. The ATLAS collaboration (2014) Search for dark matter in events with a hadronically decaying W or Z Boson and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. Phys Rev Lett 112:041802. doi:10.1103/PhysRevLett.112.041802

  30. The ATLAS collaboration (2014) Search for new particles in events with one lepton and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. JHEP 1409:037. doi:10.1007/JHEP09(2014)037. arXiv:1407.7494 [hep-ex]

  31. The ATLAS collaboration (2014) Search for dark matter in events with a Z Boson and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. Phys Rev D 90:012004. doi:10.1103/PhysRevD.90.012004

  32. The ATLAS collaboration (2015) Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at ps = 8 TeV with the ATLAS detector. Phys Rev D 91:012008. doi:10.1103/PhysRevD.91.012008

  33. The ATLAS collaboration (2015) Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector. Eur Phys J C 75.2:92. issn:1434-6044. doi:10.1140/epjc/s10052-015-3306-z

  34. Ackermann M et al (2014) Dark matter constraints from observations of 25 Milky Way satellite galaxies with the fermi large area telescope. Phys Rev D89:042001. doi:10.1103/PhysRevD.89.042001. arXiv:1310.0828 [astro-ph.HE]

  35. Cirelli M et al (2011) PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. JCAP 1103:051. doi:10.1088/1475-7516/2012/10/E01, doi:10.1088/1475-7516/2011/03/051. arXiv:1012.4515 [hep-ph]

    Google Scholar 

  36. Fox PJ et al (2012) Missing energy signatures of dark matter at the LHC. Phys Rev D85:056011. doi:10.1103/PhysRevD.85.056011. arXiv:1109.4398 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Pöttgen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pöttgen, R. (2016). Results and Interpretation. In: Search for Dark Matter with ATLAS. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41045-6_15

Download citation

Publish with us

Policies and ethics