Skip to main content

A Bio-Physical Model for the Kinetoplast DNA

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The Kinetoplast DNA (or KDNA) (Simpson 1967) is one of the most complex and singular forms of DNA in nature. It is uniquely found in the mitochondrion of a group of unicellular eukaryotic organisms of the class Kinetoplastida. Some of these organisms have been studied since the late ’60s because they are responsible for several serious diseases such as sleeping sickness and leishmaniasis (Young and Morales 1987), and are among the earliest diverging eukaryotic organisms containing a mitochondrion (Avliyakulov et al. 2004).

Sometimes careful physics-based thinking can illuminate complicated issues in biology

M.E. Cates

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This could be argued to be too sensitive to the presence of topo II, and some threshold could be added to regulate the sensitivity of \(S(t=0)\) to the value \(\phi _T\). In order to keep things simple I decided to neglect this correction.

  2. 2.

    In a time T, \(N_0\) initial cells duplicate \(T/T_R=m\) times, i.e. \(N_m = N_0\exp {(m\log {(2)})}\).

References

  • Avliyakulov, N.K., Lukes, J., Ray, D.S.: Mitochondrial histone-like DNA-binding proteins are essential for normal cell growth and mitochondrial function in crithidia fasciculata. Eukaryot. Cell 3(2), 518 (2004)

    Article  Google Scholar 

  • Brown, P.O., Cozzarelli, N.R.: Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc. Natl. Acad. Sci. USA 78(2), 843 (1981)

    Article  ADS  Google Scholar 

  • Chen, J., Englund, P.T., Cozzarelli, N.R.: Changes in network topology during the replication of kinetoplast DNA. EMBO J. 14(24), 6339 (1995a)

    Google Scholar 

  • Chen, J., Rauch, C.A., White, J.H., Englund, P.T., Cozzarelli, N.R.: The topology of the kinetoplast DNA network. Cell 80(1), 61 (1995b)

    Google Scholar 

  • de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  • de Souza, W., Attias, M., Rodrigues, J.C.F.: Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int. J. Biochem. Cell. B. 41(10), 2069 (2009)

    Article  Google Scholar 

  • Diao, Y., Hinson, K., Kaplan, R., Vazquez, M., Arsuaga, J.: The effects of density on the topological structure of the mitochondrial DNA from trypanosomes. J. Math. Biol. 64, 1087 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Dignam, J., Lebovitz, R., Roeder, R.: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1(5), 1475 (1983)

    Article  Google Scholar 

  • Docampo, R., Ulrich, P., Moreno, S.N.J.: Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Phil. Trans. R. Soc. B 365(February), 775 (2010)

    Article  Google Scholar 

  • Drew, M.E., Englund, P.T.: Intramitochondrial location and dynamics of Crithidia fasciculata kinetoplast minicircle replication intermediates. J. Cell Biol. 153(4), 735 (2001)

    Article  Google Scholar 

  • Duplantier, B., Jannink, G., Sikorav, J.L.: Anaphase chromatid motion: involvement of type II DNA topoisomerases. Biophys. J. 69(4), 1596 (1995)

    Article  ADS  Google Scholar 

  • Englund, P.: The replication of kinetoplast DNA networks in Crithidia fasciculata. Cell 14, 157 (1978)

    Article  Google Scholar 

  • Englund, P.: Free minicircles of kinetoplast DNA in Crithidia fasciculata. J. Biol. Chem. 254, 4895–4900 (1979)

    Google Scholar 

  • Gluenz, E., Shaw, M.K., Gull, K.: Structural asymmetry and discrete nucleic acid subdomains in the Trypanosoma brucei kinetoplast. Mol. Microbiol. 64, 1529 (2007)

    Article  Google Scholar 

  • Hines, J.C., Ray, D.S.: The Crithidia fasciculata KAP 1 gene encodes a highly basic protein associated with kinetoplast DNA 1. Mol. Biochem. Parasit. 94, 41 (1998)

    Article  Google Scholar 

  • Hsieh, T., Brutlag, D.: ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings. Cell 21, 115 (1980)

    Article  Google Scholar 

  • Jensen, R.E., Englund, P.T.: Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473 (2012)

    Article  Google Scholar 

  • Kellenberger, E., Carlemalm, E., Sechaud, J., Ryter, A., Haller, G.: Considerations on the condensation and the degree of compactness in non-eukaryotic dna-containing plasmas. In: Gualerzi, C.O., Pon, C.L. (eds.) Bacterial Chromatin, pp. 11–25. Springer, Berlin (1986)

    Google Scholar 

  • Kitchin, P., Klein, V., Fein, B., Englund, P.: Gapped Minicircles. A novel replication intermediate of kinetoplast DNA. J. Biol. Chem. 259(24), 15532 (1984)

    Google Scholar 

  • Krasnow, M., Cozzarelli, N.: Catenation of DNA rings by topoisomerases. J. Biol. Chem. 257, 2687 (1982)

    Google Scholar 

  • Kreuzer, K., Cozzarelli, N.: Formation and resolution of DNA catenanes by DNA gyrase. Cell 20(May), 245 (1980)

    Article  Google Scholar 

  • Lai, D.-H., Hashimi, H., Lun, Z.-R., Ayala, F.J., Lukes, J.: Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA : Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA 105(6), 1999 (2008)

    Article  ADS  Google Scholar 

  • Liu, B., Liu, Y., Motyka, S.A., Agbo, E.E.C., Englund, P.T.: Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol. 21(8), 363 (2005)

    Article  Google Scholar 

  • Lukes, J., Hashimi, H., Zíková, A.: Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr. Genet. 48(5), 277 (2005)

    Article  Google Scholar 

  • Lukeš, J., Hines, J., Evans, C., Avliyakulov, N.K., Prabhu, V.P., Chen, J., Ray, D.S.: Disruption of the Crithidia fasciculata KAP1 gene results in structural rearrangement of the kinetoplast disc. Mol. Biochem. Parasitol. 117, 179 (2001)

    Article  Google Scholar 

  • Lukeš, J., Guilbride, D., Votýpka, J.: Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1(4), 495 (2002)

    Article  Google Scholar 

  • Maxwell, A., Gellert, M.: The DNA dependence of the ATPase activity of DNA gyrase. J. Biol. Chem. 259(23), 14472 (1984)

    Google Scholar 

  • Melendy, T., Sheline, C., Ray, D.S.: Localization of a type II DNA topoisomerase to two sites at the periphery of the kinetoplast DNA of Crithidia fasciculata. Cell 55, 1083 (1988)

    Article  Google Scholar 

  • Michieletto, D., Marenduzzo, D., Orlandini, E.: Is the kinetoplast DNA a percolating network of linked rings at its critical point? Phys. Biol. 12, 036001 (2015)

    Article  ADS  Google Scholar 

  • Morris, J.C., Drew, M.E., Klingbeil, M.M., Motyka, S.A., Saxowsky, T.T., Wang, Z., Englund, P.T.: Replication of kinetoplast DNA: an update for the new millennium. Int. J. Parasitol. 31(5–6), 453 (2001)

    Article  Google Scholar 

  • Ogbadoyi, E., Robinson, D., Gull, K.: A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14(May), 1769 (2003)

    Article  Google Scholar 

  • Pérez-Morga, D., Englund, P.: The structure of replicating kinetoplast DNA network. J. Cell. Biol. 123(5), 4 (1993a)

    Google Scholar 

  • Pérez-Morga, D.L., Englund, P.T.: The attachment of minicircles to kinetoplast DNA networks during replication. Cell 74(4), 703 (1993b)

    Google Scholar 

  • Rauch, C.A., Pérez-Morga, D., Cozzarelli, N.R., Englund, P.T.: The absence of supercoiling in kinetoplast DNA minicircles. EMBO J. 12(2), 403 (1993)

    Google Scholar 

  • Renger, H., Wolstenholme, D.: Kinetoplast and other satellite DNAs of kinetoplastic and dyskinetoplastic strains of Trypanosoma. J. Cell. Biol. 50, 533 (1971)

    Article  Google Scholar 

  • Renger, H., Wolstenholme, D.: The form and structure of kinetoplast DNA of Crithidia. J. Cell. Biol. 5, 346 (1972)

    Article  Google Scholar 

  • Rybenkov, V.V., Vologodskii, A.V., Cozzarelli, N.R.: The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J. Mol. Biol. 267(2), 312 (1997)

    Article  Google Scholar 

  • Schwartz, J.J., Quake, S.R.: Single molecule measurement of the ‘speed limit’ of DNA polymerase. Proc. Natl. Acad. Sci. USA 107(3), 1254 (2009)

    Google Scholar 

  • Shapiro, T., Englund, P.: The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 49, 117 (1995)

    Article  Google Scholar 

  • Shlomai, J.: The assembly of kinetoplast DNA. Parasitol. Today 10(9), 341 (1994)

    Article  Google Scholar 

  • Shlomai, J., Linial, M.: A nicking enzyme from Trypanosomatids which specifically affects the topological linking of duplex DNA circles. J. Biol. Chem. 261(34), 16219 (1986)

    Google Scholar 

  • Shlomai, J., Zadok, A.: Reversible decatenation of kinetoplast DNA by a DNA topoisomerase from trypanosomatids. Nucleic Acids Res. 11(12), 4019 (1983)

    Article  Google Scholar 

  • Silver, L.E., Torri, A.F., Hajduk, S.L.: Organized packaging of kinetoplast DNA networks. Cell 47(4), 537 (1986)

    Article  Google Scholar 

  • Simpson, L.P.: Morphogenesis and the function of the kinetoplast in “Leishmania”. Atlas de Symposia sobre a Biota Amazonica (Pathologia), 6, 231 (1967)

    Google Scholar 

  • Taniguchi, Y., Choi, P.J., Li, G.-W., Chen, H., Babu, M., Hearn, J., Emili, A., Xie, X.S.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991), 533 (2010)

    Google Scholar 

  • Wang, Z., Englund, P.: RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO J. 20(17) (2001)

    Google Scholar 

  • Wang, Z., Morris, J.C., Drew, M.E., Englund, P.T.: Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275(51), 40174 (2000)

    Article  Google Scholar 

  • White, J.H., Millett, K.C., Cozzarelli, N.R.: Description of the topological entanglement of DNA catenanes and knots by a powerful method involving strand passage and recombination. J. Mol. Biol. 197(3), 585 (1987)

    Article  Google Scholar 

  • Wickiser, J.K., Winkler, W.C., Breaker, R.R., Crothers, D.M.: The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18(1), 49 (2005)

    Article  Google Scholar 

  • Xu, C.W., Ray, D.S.: Isolation of proteins associated with kinetoplast DNA networks in vivo. Proc. Natl. Acad. Sci. USA 90, 1786 (1993)

    Article  ADS  Google Scholar 

  • Xu, C.W., Hines, J.C., Engel, M.L., Russell, D.G., Ray, D.S.: Nucleus-encoded histone H1-like proteins are associated with kinetoplast DNA in the trypanosomatid Crithidia fasciculata. Mol. Cell. Biol. 16(2), 564 (1996)

    Article  Google Scholar 

  • Young, D., Morales, A.: Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from cryopreserved colombian sand flies (Diptera: Psychodidae). J. Med. Entomol. 24, 587 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Michieletto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michieletto, D. (2016). A Bio-Physical Model for the Kinetoplast DNA. In: Topological Interactions in Ring Polymers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41042-5_5

Download citation

Publish with us

Policies and ethics