Skip to main content

Threading Rings

  • Chapter
  • First Online:
Topological Interactions in Ring Polymers

Part of the book series: Springer Theses ((Springer Theses))

  • 365 Accesses

Abstract

Understanding the dynamical and rheological properties of solutions of long ring polymers is of primary importance in several areas of soft matter, material science and biophysics (Cremer and Cremer 2001; Kapnistos et al. 2008; Halverson et al. 2011b, 2013). As mentioned in Chap. 2, ring polymers do not follow the standard reptation theory and in order to make progress it seems that the scientific community will require innovative and unconventional approaches to analyse their properties.

It looks as if it was a bride, walking down the isle, while her dress is being pulled back by flower girls whose dresses are also being pulled by flower girls whose dresses are pulled by other flower girls ...

A.Y. Grosberg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting to notice that in the ensemble I study in this chapter, the picture of “rings in a gel”, or “in a background of obstacles”, is more appropriate than in the case of a pure melt.

  2. 2.

    These could be closed at infinity, but anywhere away from the cell would suffice.

  3. 3.

    It is fair to say that the similarity between these two methods became apparent, at least to me, only after we finalised the algorithm to detect threadings.

  4. 4.

    \(\langle T_{0.1} \rangle \) can be conceptually compared to the time taken by a linear polymer to renew its confining tube, begin threadings a sort of “tube” (or “cage”) for rings.

  5. 5.

    It is interesting to notice that the same question is also frequently asked when studying more conventional glass-forming materials (Berthier and Biroli 2011).

  6. 6.

    Since the mobile chain leaves a hole that produces an uniformity in the system density and could, in principle, interfere with a perfectly free diffusion.

  7. 7.

    It is perhaps interesting to think about what would happen if one were to relax the uncrossability condition imposed on the chains and substitute it with a potential barrier of finite height A. In this scenario, one expects the scattering function to re-establish its decay although only after a time \(t \sim \langle Th\rangle \exp {A}\) that corresponds to an activated process where at least some of the threadings must be by-passed. In this picture, the system would probably display a long-time \(\alpha \) relaxation which decouples from the local rattling proportionally to the number of threadings in the system.

  8. 8.

    and is broadly analogous, although in a much less coarse-grained sense, to what happens in glass-forming systems belonging to the class of “Kinetically Constrained Models” (Palmer et al. 1984).

References

  • Adam, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43(1), 139 (1965)

    Article  ADS  Google Scholar 

  • Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W H Freeman and Company, New York (1994)

    MATH  Google Scholar 

  • Aichele, M., Baschnagel, J.: Glassy dynamics of simulated polymer melts: coherent scattering and van Hove correlation functions. Eur. Phys. J. E 5(2), 229 (2001)

    Article  Google Scholar 

  • Berthier, L., Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83(2), 587 (2011)

    Article  ADS  Google Scholar 

  • Biroli, G., Bouchaud, J.-P., Cavagna, A., Grigera, T.S., Verrocchio, P.: Thermodynamic signature of growing amorphous order in glass-forming liquids. Nat. Phys. 4(10), 771 (2008)

    Article  Google Scholar 

  • Bouchaud, J.-P., Biroli, G.: On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121(15), 7347 (2004)

    Article  ADS  Google Scholar 

  • Cammarota, C.: Ph.D. thesis, La Sapienza (Roma) (2009)

    Google Scholar 

  • Cammarota, C.: A general approach to systems with randomly pinned particles: unfolding and clarifying the random pinning glass transition. Europhys. Lett. 101(5), 56001 (2013)

    Article  ADS  Google Scholar 

  • Cammarota, C., Biroli, G.: Ideal glass transitions by random pinning. Proc. Natl. Acad. Sci. USA 109(23), 8850 (2012)

    Article  ADS  Google Scholar 

  • Cates, M., Deutsch, J.: Conjectures on the statistics of ring polymers. J. Phys. Paris 47, 2121 (1986)

    Article  Google Scholar 

  • Cremer, T., Cremer, C.: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2(4), 292 (2001)

    Article  Google Scholar 

  • Doi, M., Edwards, S.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1988)

    Google Scholar 

  • Gokhale, S., Nagamanasa, K.H., Ganapathy, R., Sood, A.K.: Growing dynamical facilitation on approaching the random pinning colloidal glass transition. Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  • Grosberg, A.: Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter 10, 560 (2014)

    Article  ADS  Google Scholar 

  • Grosberg, A.Y., Rabin, Y., Havlin, S., Neer, A.: Crumpled globule model of the three-dimensional structure of DNA. Europhys. Lett. 23(5), 373 (1993)

    Article  ADS  Google Scholar 

  • Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 134(20), 204904 (2011a)

    Google Scholar 

  • Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 134(20), 204905 (2011b)

    Google Scholar 

  • Halverson, J.D., Grest, G., Grosberg, A.Y., Kremer, K.: Rheology of ring polymer melts: from linear contaminants to ring-linear blends. Phys. Rev. Lett. 108(3), 038301 (2012)

    Article  ADS  Google Scholar 

  • Halverson, J.D., Kremer, K., Grosberg, A.Y.: Comparing the results of lattice and off-lattice simulations for the melt of nonconcatenated rings. J. Phys. A 46(6), 065002 (2013)

    Article  ADS  Google Scholar 

  • Halverson, J.D., Smrek, J., Kremer, K., Grosberg, A.: From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep. Prog. Phys. 77, 022601 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Kane, C.L., Lubensky, T.C.: Topological boundary modes in isostatic lattices. Nat. Phys. 10(1), 39 (2013)

    Article  Google Scholar 

  • Kapnistos, M., Lang, M., Vlassopoulos, D., Pyckhout-Hintzen, W., Richter, D., Cho, D., Chang, T., Rubinstein, M.: Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 7(12), 997 (2008)

    Article  ADS  Google Scholar 

  • Karmakar, S., Parisi, G.: Random pinning glass model. Proc. Natl. Acad. Sci. USA 110(8), 1 (2013)

    Article  Google Scholar 

  • Klein, J.: Dynamics of entangled linear, branched, and cyclic polymers. Macromolecules 118(33), 105 (1986)

    Article  ADS  Google Scholar 

  • Kob, W., Donati, C., Plimpton, S., Poole, P., Glotzer, S.: Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79(15), 2827 (1997)

    Article  ADS  Google Scholar 

  • Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057 (1990)

    Article  ADS  Google Scholar 

  • Lee, E., Kim, S., Jung, Y.: Slowing down of ring polymer diffusion caused by inter-ring threading. Macromol. Rapid Commun. 36, 1115–1121 (2015)

    Article  Google Scholar 

  • Likos, C.N., Narros, A., Moreno, A., Capone, B.: Multi-blob coarse graining for ring polymer solutions. Soft Matter 10, 9601 (2014)

    Article  ADS  Google Scholar 

  • Lo, W.-C., Turner, M.S.: The topological glass in ring polymers. Europhys. Lett. 102(5), 58005 (2013)

    Article  ADS  Google Scholar 

  • Maxwell, J.C.: L. On the calculation of the equilibrium and stiffness of frames. Phil. Mag. 27, 294 (1864)

    Google Scholar 

  • Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Milner, S., Newhall, J.: Stress relaxation in entangled melts of unlinked ring polymers. Phys. Rev. Lett. 105(20), 208302 (2010)

    Article  ADS  Google Scholar 

  • Nagamanasa, K.H., Gokhale, S., Sood, A.K., Ganapathy, R.: Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former. Nat. Phys. 11(May), 403 (2015)

    Article  Google Scholar 

  • Obukhov, S., Rubinstein, M.: Dynamics of a ring polymer in a gel. Phys. Rev. Lett. 73(9), 1263 (1994)

    Article  ADS  Google Scholar 

  • Orlandini, E., Whittington, S.G.: Entangled polymers in condensed phases. J. Chem. Phys. 121(23), 12094 (2004)

    Article  ADS  Google Scholar 

  • Ozawa, M., Kob, W., Ikeda, A., Miyazaki, K.: Equilibrium phase diagram of a randomly pinned glass-former. Proc. Natl. Acad. Sci. USA 112(22), 6914 (2015)

    Article  ADS  Google Scholar 

  • Palmer, R.G., Stein, D.L., Abrahams, E., Anderson, P.W.: Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett. 53(10), 958 (1984)

    Article  ADS  Google Scholar 

  • Parisi, G., Sourlas, N.: Critical behavior of branched polymers and the Lee-Yang edge singularity. Phys. Rev. Lett. 46(14), 871 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pasquino, R., Vasilakopoulos, T., Jeong, C., Lee, H., Rogers, S., Sakellariou, G., Allgaier, J., Takano, A., Bras, A., Chang, T., Goossen, S., Pyckhout-Hintzen, W., Wischnewski, A., Hadjichristidis, N., Richter, D., Rubinstein, M., Vlassopoulos, D.: Viscosity of ring polymer melts. ACS Macro Lett. 2, 874 (2013)

    Article  Google Scholar 

  • Rosa, A., Everaers, R.: Ring polymers in the melt state: the physics of crumpling. Phys. Rev. Lett. 112, 118302 (2014)

    Article  ADS  Google Scholar 

  • Rubinstein, M.: Dynamics of ring polymers in the presence of fixed obstacles. Phys. Rev. Lett. 57(24), 3023 (1986)

    Article  ADS  Google Scholar 

  • Rubinstein, M.: Discretized model of entangled-polymer dynamics. Phys. Rev. Lett. 59(17), 1946 (1987)

    Article  ADS  Google Scholar 

  • Rubinstein, M., Colby, H.R.: Polymer Physics. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Smrek, J., Grosberg, A.Y.: Understanding the dynamics of rings in the melt in terms of annealed tree model. J. Phys.: Condens. Matter 27, 064117 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Michieletto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michieletto, D. (2016). Threading Rings. In: Topological Interactions in Ring Polymers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41042-5_4

Download citation

Publish with us

Policies and ethics