Skip to main content

Particle Filter Optimization: A Brief Introduction

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9712))

Included in the following conference series:

Abstract

In this paper, we provide a brief introduction to particle filter optimization (PFO). The particle filter (PF) theory has revolutionized probabilistic state filtering for dynamic systems, while the PFO algorithms, which are developed within the PF framework, have not attracted enough attention from the community of optimization. The purpose of this paper is threefold. First, it aims to provide a succinct introduction of the PF theory which forms the theoretical foundation for all PFO algorithms. Second, it reviews PFO algorithms under the umbrella of the PF theory. Lastly, it discusses promising research directions on the interface of PF methods and swarm intelligence techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93(443), 1032–1044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gordon, N.J., Salmond, D.J., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F (Radar Sig. Process.) 140(2), 107–113 (1993)

    Article  Google Scholar 

  3. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  4. Del Moral, P.: Feynman-Kac Formulae. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  5. Del Moral, P.: Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems. Ann. Appl. Probab. 8, 438–495 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Del Moral, P.: Non-linear filtering: interacting particle resolution. Markov process. Relat. Fields 2(4), 555–581 (1996)

    MATH  Google Scholar 

  7. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Sig. Process. 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  8. Hu, X.L., Schön, T.B., Ljung, L.: A basic convergence result for particle filtering. IEEE Trans. Sig. Process. 56(4), 1337–1348 (2008)

    Article  MathSciNet  Google Scholar 

  9. Daum, F.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20(8), 57–69 (2005)

    Article  Google Scholar 

  10. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 19(7), 37–38 (2004)

    Article  MATH  Google Scholar 

  11. Chen, Z.: Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 182(1), 1–69 (2003)

    Article  Google Scholar 

  12. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Sig. Process. 50(2), 425–437 (2002)

    Article  Google Scholar 

  13. Gordon, N., Salmond, D., Ewing, C.: Bayesian state estimation for tracking and guidance using the bootstrap filter. J. Guidance Control Dyn. 18(6), 1434–1443 (1995)

    Article  Google Scholar 

  14. Pozna, C., Precup, R.E., Földesi, P.: A novel pose estimation algorithm for robotic navigation. Robot. Autonom. Syst. 63, 10–21 (2015)

    Article  Google Scholar 

  15. De Freitas, N.: Rao-Blackwellised particle filtering for fault diagnosis. In: Proceedings of IEEE Aerospace Conference, vol. 4, pp. 4–1767. IEEE (2002)

    Google Scholar 

  16. Clapp, T.C., Godsill, S.J.: Fixed-lag blind equalization and sequence estimation in digital communications systems using sequential importance sampling. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, pp. 2495–2498 (1999)

    Google Scholar 

  17. Fearnhead, P.: Using random Quasi-monte-carlo within particle filters, with application to financial time series. J. Comput. Graph. Stat. 14(4), 751–769 (2005)

    Article  MathSciNet  Google Scholar 

  18. DiMaio, F., Kondrashov, D.A., Bitto, E., Soni, A., Bingman, C.A., Phillips, G.N., Shavlik, J.W.: Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23(21), 2851–2858 (2007)

    Article  Google Scholar 

  19. Chen, X., Zhou, E.: Population model-based optimization with Sequential Monte Carlo. In: Proceedings of 2013 Winter Simulation Conference, pp. 1004–1015 (2013)

    Google Scholar 

  20. Zhou, E., Fu, M.C., Marcus, S., et al.: Particle filtering framework for a class of randomized optimization algorithms. IEEE Trans. Autom. Control 59(4), 1025–1030 (2014)

    Article  MathSciNet  Google Scholar 

  21. Whiteley, N., Johansen, A.M.: Recent developments in auxiliary particle filtering. In: Cemgil, B., Chiappa, S. (eds.) Inference and Learning in Dynamic Models, vol. 38, pp. 39–47. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  22. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  23. Zhang, M., Xin, M., Yang, J.: Adaptive multi-cue based particle swarm optimization guided particle filter tracking in infrared videos. Neurocomputing 122, 163–171 (2013)

    Article  Google Scholar 

  24. Tong, G., Fang, Z., Xu, X.: A particle swarm optimized particle filter for nonlinear system state estimation. In: IEEE Congress on Evolutionary Computation (CEC), pp. 438–442 (2006)

    Google Scholar 

  25. Kwok, N.M., Fang, G., Zhou, W.: Evolutionary particle filter: re-sampling from the genetic algorithm perspective. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2935–2940 (2005)

    Google Scholar 

  26. Han, H., Ding, Y.S., Hao, K.R., Liang, X.: An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking. Comput. Math. Appl. 62(7), 2685–2695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiaolong, L., Jinfu, F., Qian, L., Taorong, L., Bingjie, L.: A swarm intelligence optimization for particle filter. In: Proceedings of 7th World Congress on Intelligent Control and Automation, pp. 1986–1991 (2008)

    Google Scholar 

  28. Zhou, E., Fu, M.C., Marcus, S.I.: A particle filtering framework for randomized optimization algorithms. In: Proceedings of 40th Conference on Winter Simulation, pp. 647–654 (2008)

    Google Scholar 

  29. Ji, C., Zhang, Y., Tong, M., Yang, S.: Particle filter with swarm move for optimization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 909–918. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Medina, J.C., Taflanidis, A.A.: Adaptive importance sampling for optimization under uncertainty problems. Comput. Methods Appl. Mech. Eng. 279, 133–162 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhou, E., Chen, X.: Sequential monte carlo simulated annealing. J. Global Optim. 55(1), 101–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 68(3), 411–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, J.S., Chen, R., Logvinenko, T.: A theoretical framework for sequential importance sampling with resampling. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo methods in Practice. SEIS, pp. 225–246. Springer, New York (2001)

    Chapter  Google Scholar 

  34. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    MathSciNet  Google Scholar 

  35. Hu, J., Wang, Y., Zhou, E., Fu, M.C., Marcus, S.I.: A survey of some model-based methods for global optimization. Optimization, Control, and Applications of Stochastic Systems. SCFA, pp. 157–179. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  36. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, B.: Posterior exploration based sequential Monte Carlo for global optimization. arXiv preprint (2015). http://arxiv.org/abs/1509.08870

  39. Rubinstein, R.: The cross-entropy method for combinatorial and continuous optimization. Methodology Comput. Appl. Probab. 1(2), 127–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oh, M.S., Berger, J.O.: Integration of multimodal functions by Monte Carlo importance sampling. J. Am. Stat. Assoc. 88(422), 450–456 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cappé, O., Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Adaptive importance sampling in general mixture classes. Stat. Comput. 18(4), 447–459 (2008)

    Article  MathSciNet  Google Scholar 

  42. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)

    Article  Google Scholar 

  43. Yang, C., Kumar, M.: An information guided framework for simulated annealing. J. Global Optim. 62(1), 131–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation (NSF) of China under grant Nos. 61571238, 61302158 and 61571434, the NSF of Jiangsu province under grant No. BK20130869, China Postdoctoral Science Foundation under grant No.2015M580455, China Postdoctoral International Academic Exchange Program and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications under grant No. NY213030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, B., Cheng, S., Shi, Y. (2016). Particle Filter Optimization: A Brief Introduction. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41000-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40999-3

  • Online ISBN: 978-3-319-41000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics