Skip to main content

Satisfiability via Smooth Pictures

  • Conference paper
  • First Online:
Book cover Theory and Applications of Satisfiability Testing – SAT 2016 (SAT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9710))

Abstract

A picture over a finite alphabet \(\varGamma \) is a matrix whose entries are drawn from \(\varGamma \). Let \(\pi :\varSigma \rightarrow \varGamma \) be a function between finite alphabets \(\varSigma \) and \(\varGamma \), and let \(V,H\subseteq \varSigma \times \varSigma \) be binary relations over \(\varSigma \). Given a picture \(N\) over \(\varGamma \), the picture satisfiability problem consists in determining whether there exists a picture M over \(\varSigma \) such that \(\pi (M_{ij})=N_{ij}\), and such that the constraints imposed by V and H on adjacent vertical and horizontal positions of M are respectively satisfied. This problem can be easily shown to be NP-complete. In this work we introduce the notion of s-smooth picture. Our main result states the satisfiability problem for s-smooth pictures can be solved in time polynomial on s and on the size of the input picture. With each picture \(N\), one can naturally associate a CNF formula \(F(N)\) which is satisfiable if and only if \(N\) is satisfiable. In our second result, we define an infinite family of unsatisfiable pictures which intuitively encodes the pigeonhole principle. We show that this family of pictures is polynomially smooth. In contrast we show that the formulas which naturally arise from these pictures are hard for bounded-depth Frege proof systems. This shows that there are families of pictures for which our algorithm for the satisfiability for smooth pictures performs exponentially better than certain classical variants of SAT solvers based on the technique of conflict-driven clause-learning (CDCL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that the first and last columns of the pigeonhole picture do not correspond to holes.

References

  1. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 274–282. IEEE (1996)

    Google Scholar 

  3. Buss, S.R., et al.: Resolution proofs of generalized pigeonhole principles. Theoret. Comput. Sci. 62(3), 311–317 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: resolution refinements that characterize DLL algorithms with clause learning. Logical Meth. Comput. Sci. 4, 1–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherubini, A., Reghizzi, S.C., Pradella, M., San, P.: Picture languages: Tiling systems versus tile rewriting grammars. Theoret. Comput. Sci. 356(1), 90–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symbol. Logic 44(01), 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern Recogn. Artif. Intell. 6(2&3), 241–256 (1992)

    Article  MATH  Google Scholar 

  9. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively P-simulate general propositional resolution. In: Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI 2008), pp. 283–290 (2008)

    Google Scholar 

  11. Kim, C., Sudborough, I.H.: The membership and equivalence problems for picture languages. Theoret. Comput. Sci. 52(3), 177–191 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. J. Symbol. Logic 59(01), 73–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krajíček, J., Pudlák, P., Woods, A.: An exponential lower bound to the size of bounded depth frege proofs of the pigeonhole principle. Random Struct. Algorithms 7(1), 15–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theoret. Comput. Sci. 178(1), 275–283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture languages. Inf. Control 54(3), 155–185 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535. ACM (2001)

    Google Scholar 

  17. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Comput. Complex. 3(2), 97–140 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raz, R.: Resolution lower bounds for the weak pigeonhole principle. J. ACM (JACM) 51(2), 115–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theoret. Comput. Sci. 92(1), 181–189 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Academic Press (2014)

    Google Scholar 

  22. Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theoret. Comput. Sci. 218(2), 297–323 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council, grant number 339691, in the context of the project Feasibility, Logic and Randomness (FEALORA). The author thanks Pavel Pudlák and Neil Thapen for enlightening discussions on Frege proof systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Oliveira Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

de Oliveira Oliveira, M. (2016). Satisfiability via Smooth Pictures. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40970-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40969-6

  • Online ISBN: 978-3-319-40970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics