Skip to main content

Ebola in the Hog Sector: Modeling Pandemic Emergence in Commodity Livestock

  • Chapter
  • First Online:
Neoliberal Ebola

Abstract

Commodity agriculture represents an expanding sink for a growing array of zoonotic pathogens. The emergence of novel strains of Ebola by way of economically driven shifts in husbandry and horticulture appears one such transition. Following up experimental studies of Ebola transmission, the agroeconomic origins of the Zaire ebolavirus outbreak in West Africa, and reports of endemic Reston ebolavirus in commercial hog in the Philippines and China, we develop a series of stochastic models that explicitly integrate epidemiology, spatial dynamics, and economics. Our inductive modeling suggests repeated punctuated emergence and human spillover of foodborne pathogens are intrinsic to industrial systems of production. In contrast to traditional and conservation agroecologies, by its accelerated and geographically expansive production of genetically uniform seed and stock, highly capitalized agriculture appears especially vulnerable to sudden shifts in disease evolution and spread. Industrial food production strips out environmental stochasticity that can cap pathogen population growth. The mechanisms for such explosive epidemiologies appear fundamentally founded in economic policy and practice. A variant of the Black–Scholes pricing model implies that pathogen propagation in intensive agrifood production outpaces the margins the sector allocates to biocontrol and containment across large expanses of the model’s parameter space. The resulting financial gaps appear met by externalizing the epidemiological costs of industrial food production to livestock morbidity, contract producers, farmworker and consumer health, smallholder markets, local wildlife, off-site environments, and government budgets across administrative units. By way of the models’ results, we hypothesize that as the hog sector expands for export, including across areas of Africa in which Ebola has already emerged as a human infection, multiple Ebola strains will follow Reston’s trajectory, evolving novel phenotypes in livestock and repeatedly spilling over into human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alawneh J. I., Barnes, T. S., Parke, C., Lapuz, E., David, E., Basinang, V., et al. (2014). Description of the pig production systems, biosecurity practices and herd health providers in two provinces with high swine density in the Philippines. Preventive Veterinary Medicine, 114(2), 73–87. doi:10.1016/j.prevetmed.2014.01.020. Epub 2014 Jan 29.

    Google Scholar 

  • Alexandratos, N., & Bruinsma, J. (2012). World Agriculture Towards 2030/2050: The 2012 Revision. ESA Working Paper 12-03. Available online at http://www.fao.org/docrep/016/ap106e/ap106e.pdf.

  • Allen, J., & Lavau, S. (2014). Just-in-time disease: Biosecurity, poultry and power. Journal of Cultural Economics. http://dx.doi.org/10.1080/17530350.2014.904243.

  • Arthur, J. A., & Albers, G. A. (2003). Industrial perspective on problems and issues associated with poultry breeding. In: W. M. Muir, & S. E. Aggrey (Eds.), Poultry genetics, breeding and biotechnology. Oxfordshire: CABI Publishing.

    Google Scholar 

  • Atherstone, C., Roesel, K., & Grace, D. (2014). Ebola risk assessment in the pig value chain in Uganda. ILRI Research Report 34, International Livestock Research Institute, Nairobi, Kenya.

    Google Scholar 

  • Atkins, K., Wallace, R. G., Hogerwerf, L., Gilbert, M., Slingenbergh, J., Otte, J., et al. (2010). Livestock landscapes and the evolution of influenza virulence. Virulence Team Working Paper No. 1, Animal Health and Production Division, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Bailey, N. T. (1975). The mathematical theory of infectious diseases and its applications. New York: Hafner Press.

    Google Scholar 

  • Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: Methods, applications and data. Advances in Parasitology, 62, 119–156. http://dx.doi.org/10.1016.

  • Baron, R. C., McCormick, J. B., & Zubeir, O. A. (1983). Ebola virus disease in southern Sudan: Hospital dissemination and intrafamilial spread. Bulletin of the World Health Organization, 61, 99–1003.

    Google Scholar 

  • Barrette, R. W., Metwally, S. A., Rowland, J. M., Xu, L., Zaki, S. R., Nichol, S. T., et al. (2009). Discovery of swine as a host for the Reston ebolavirus. Science, 325(5937), 204–206. doi:10.1126/science.1172705.

    Article  CAS  PubMed  Google Scholar 

  • Bartsch, S. M., Gorham, K., & Lee, B. Y. (2015). The cost of an Ebola case. Pathogens and global health, 109(1), 4–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bausch, D. (2011). Ebola virus as a foodborne pathogen? Cause for consideration but not panic. Journal of Infectious Disease, 204, 179–181.

    Article  Google Scholar 

  • Bausch, D., & Schwarz, L. (2014). Outbreak of Ebola virus disease in Guinea: Where ecology meets economy. PLOS Neglected Tropical Diseases, 8, e3056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beddington, J., & May, R. (1977). Harvesting natural populations in a randomly fluctuating environment. Science, 197, 463–465.

    Article  CAS  PubMed  Google Scholar 

  • Beer, A. (2012). The economic g of Australia and its analysis: From industrial to post-industrial regions. Geographical Research, 50(3), 269–281.

    Article  Google Scholar 

  • Bello, W. (2003). Multilateral punishment: The Philippines in the WTO, 1995–2003. Stop the New Round Coalition! Manila: Focus on the Global South. http://www.apl.org.ph/ps/multilateral-punishment.pdf.

  • Bergmann, L. R. (2013a). Bound by chains of carbon: Ecological-economic geographies of globalization. Annals of the Association of American Geographers, 103, 1348–1370. http://dx.doi.org/10.1080/00045608.2013.779547.

    Google Scholar 

  • Bergmann, L. R. (2013b). Beyond the Anthropocene: Toward modest mathematical narratives for more-than-human global communities. Paper accepted for session: ‘Re-evaluating the Anthropocene, Resituating Anthropos,’ Annual Meeting of the Association of American Geographers, Los Angeles.

    Google Scholar 

  • Bertherat, E., Renaut, A., Nabias, R., Dubreuil, G., & Georges-Courbot, M. C. (1999). Leptospirosis and Ebola virus infection in five gold-panning villages in northeastern Gabon. The American Journal of Tropical Medicine and Hygiene, 60(4), 610–615.

    CAS  PubMed  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.

    Article  Google Scholar 

  • Boni, M. F., Galvani, A. P., Wickelgrend, A. L., & Malani, A. (2013). Economic epidemiology of avian influenza on smallholder poultry farms. Theoretical Population Biology, 90, 135e144.

    Article  Google Scholar 

  • Borras, S. M., & Franco, J. C. (2011). Political dynamics of land-grabbing in Southeast Asia: Understanding Europe’s role. Amsterdam: Transnational Institute.

    Google Scholar 

  • Bowen-Jones, E., Brown, D., & Robinson, E. J. Z. (2003). Economic commodity or environmental crisis? An interdisciplinary approach to analysing the bushmeat trade in Central and West Africa. Area, 35(4), 390–402.

    Article  Google Scholar 

  • Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A., & Godfray, H. C. (2013). The consequence of tree pests and diseases for ecosystem services. Science, 342, 1235773. doi:10.1126/science.1235773.

    Article  CAS  PubMed  Google Scholar 

  • Brown, C. (2004). Emerging zoonoses and pathogens of public health significance – an overview. Scientific and Technical Review of the Office International des Epizooties (Paris), 23(2), 435–442.

    Article  CAS  Google Scholar 

  • Burdon, J., & Thrall, P. (2008). Pathogen evolution across the agro-ecological interface: Implications for management. Evolutionary Applications, 1, 57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai, Y., Wang, X., Wang, W., & Zhao, M. (2013). Stochastic dynamics of an SIRS epidemic model with ratio-dependent incidence rate. Abstract and Applied Analysis, 11pp. ID 172631.

    Google Scholar 

  • Capua, I., & Marangon, S. (2007). Control and prevention of avian influenza in an evolving scenario. Vaccine, 25(30), 5645–5652.

    Article  CAS  PubMed  Google Scholar 

  • Cardinoza, G., & Reyes, C. (2009, January 8). UN agencies inspect Luzon hog farms. Philippine Daily Inquirer. http://newsinfo.inquirer.net/breakingnews/nation/view/20090108-182214/UN-agencies-inspect-Luzon-hog-farms.

  • Carroll, A., Towner, J. S., Sealy, T. K., McMullan, L. K., Khristova, M. L., Burt, F. J., et al. (2013). Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. Journal of Virology, 87, 2608–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catelo, M. A. O., Narrod, C. A., & Tiongco, M. M. (2008). Structural Changes in the Philippine Pig Industry and Their Environmental Implications. IFPRI Discussion Paper 00781, The International Food Policy Research Institute, Washington, DC.

    Google Scholar 

  • Centeno, M. A., & Cohen, J. N. (2012). The arc of Neoliberalism. Annual Review of Sociology, 38, 317–340. doi:10.1146/annurev-soc-081309-150235.

    Article  Google Scholar 

  • Chua, K. B. (2003). Nipah virus outbreak in Malaysia. Journal of Clinical Virology, 26, 265–275.

    Article  PubMed  Google Scholar 

  • Costales, A., Delgado, C., Catelo, M. A., Lapar, M. L., Tiongco, M., Ehui, S., et al. (2007). Scale and access issues affecting smallholder hog producers in and expanding peri-urban market; Southern Luzon, Philippines. IFPRI Research Report No. 151. IFPRI, Washington, DC. http://www.ifpri.org/sites/default/files/publications/rr151_0.pdf.

  • Costales, A. C., Delgado, C., Catelo, M. A. O., Tiongco, M., Chatterjee, A., delos Reyes, A., & Narrod, C. (2003). Policy, technical, and environmental determinants and implications of the scaling-up of broiler and swine production in The Philippines. Annex I, Final Report of IFPRI-FAO Livestock Industrialization Project: Phase, I. I., International Food Policy Research Institute, Washington, DC.

    Google Scholar 

  • Coxhead, I., & Jayasuriya, S. (2002). Development Strategy, Poverty and Deforestation in the Philippines. Department of Agricultural & Applied Economics, University of Wisconsin-Madison, Staff Paper No. 456. http://www.aae.wisc.edu/pubs/sps/pdf/stpap456.pdf.

  • Coxhead, I., Shively, G., & Shuai, X. (1999). Development Policies, Resource Constraints, and Agricultural Expansion on the Philippine Land Frontier. Department of Agricultural & Applied Economics, University of Wisconsin-Madison, Staff Paper No. 425. https://www.aae.wisc.edu/pubs/sps/pdf/stpap425.pdf.

  • Cyranoski, D. (2009). Ebola outbreak has experts rooting for answers. Nature, 457, 364–365.

    Article  CAS  PubMed  Google Scholar 

  • Daszak, P., Plowright, R. K., Epstein, J. H., Pulliam, J., Abdul Rahman, S., Field, H. E., et al. (2006). The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In S. K. Collinge & Ray, C. (Eds.), Disease ecology: Community structure and pathogen dynamics (pp. 186–201). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • David, C. C. (1997). Agricultural policy and the WTO agreement: The Philippine case. Discussion Paper Series No. 97–13, Philippine Institute for Development Studies, Makati City. http://dirp4.pids.gov.ph/ris/dps/pidsdps9713.pdf.

  • Delgado, C. L., Narrod, C., & Tiongco, M. M. (2003). Policy, technical, and environmental determinants and implications of the scaling-up of livestock production in four fast-growing developing countries: A synthesis. Final Research Report of Phase, I. I., Project on Livestock Industrialization, Trade and Social-Health-Environment Impacts in Developing Countries. http://www.fao.org/3/a-x6170e/x6170e00.htm.

  • Dembo, A., & Zeitouni, O. (1998). Large deviations: Techniques and applications. New York: Springer.

    Book  Google Scholar 

  • Diaz, S., Fargione, J., Chapin, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4(8), e277. doi:10.1371/journal.pbio.0040277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drew, T. W. (2011). The emergence and evolution of swine viral diseases: To what extent have husbandry systems and global trade contributed to their distribution and diversity? Revue Scientifique et Technique (Paris), 30, 95–106.

    Article  CAS  Google Scholar 

  • Dudas, G., & Rambaut, A. (2014). Phylogenetic analysis of Guinea 2014 EBOV Ebolavirus outbreak 2014. PLOS Currents Outbreaks, 6. ecurrents.outbreaks.84eefe5ce43ec9dc0bf0670f7b8b417d.

    Google Scholar 

  • Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen host environment interplay and disease emergence. Emerging Microbes and Infections, 2, e5. http://www.nature.com/emi/journal/v2/n2/full/emi20135a.htm.

  • Epstein, J. H., Field, H. E., Luby, S., Pulliam, J. R., & Daszak, P. (2006). Nipah virus: Impact, origins, and causes of emergence. Current Infectious Disease Reports, 8(1), 59–65.

    Article  PubMed  Google Scholar 

  • Ercsey-Ravasz, M., Toroczkai, Z., Lakner, Z., & Baranyi, J. (2012). Complexity of the international agro-food trade network and its impact on food safety. PLoS One, 7(5), e37810. http://dx.doi.org/10.1371/journal.pone.0037810.

  • FAO (2013a). FAO Statistical Yearbook 2013. Food and Agriculture Organization, United Nations, Rome.

    Google Scholar 

  • FAO (2013b). World Livestock 2013: Changing disease landscapes. Food and Agriculture Organization, United Nations, Rome.

    Google Scholar 

  • Farber, S. C., Costanza, R., & Wilson, M. A. (2002). Economic and ecological concepts for valuing ecosystem services. Ecological Economics, 41, 375–392.

    Article  Google Scholar 

  • Field, H., Young, P., Yob, J. M., Mills, J., Hall, L., & Mackenzie, J. (2001). The natural history of Hendra and Nipah viruses. Microbes and Infection, 3(4), 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Foley, J., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  PubMed  Google Scholar 

  • Formenty, P., Boesch, C., Wyers, M., Steiner, C., Donati, F., Dind, F., et al. (1999). Ebola virus outbreak among wild chimpanzees living in a rain forest of Cote d’Ivoire. The Journal of Infectious Diseases, 179(1), S120–126.

    Article  PubMed  Google Scholar 

  • Foster, J. T., Beckstrom-Sternberg, S. M., Pearson, T., Beckstrom-Sternberg, J. S., Chain, P. S., Roberto, F. F., et al. (2009). Whole-genome-based phylogeny and divergence of the genus Brucella. Journal of Bacteriology, 191(8), 2864–2870. doi:10.1128/JB.01581-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller, T. L., Gilbert, M., Martin, V., Cappelle, J., Hosseini, P., Njabo, K. Y., et al. (2013). Predicting hotspots for influenza virus reassortment. Emerging Infectious Diseases, 19(4), 581–588. doi:10.3201/eid1904.120903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulton, J. E. (2006). Avian genetic stock preservation: An industry perspective. Poultry Science, 85(2), 227–231. Paper for the Poultry Science Association Ancillary Scientists Symposium, July 31, 2005, Auburn, Alabama, “Conservation of Avian Genetic Resources: Current Opportunities and Challenges,” organized and chaired by Dr. Muquarrab Qureshi.

    Google Scholar 

  • Ganti, T. (2014). Neoliberalism. Annual Review of Anthropology, 43, 89–104. doi:10.1146/annurev-anthro-092412-155528.

    Article  Google Scholar 

  • Gatherer, D. (2015). The unprecedented scale of the West African Ebola virus disease outbreak is due to environmental and sociological factors, not special attributes of the currently circulating strain of the virus. Evidence-Based Medicine, 20(1), 28. doi:10.1136/ebmed-2014-110127.

    Article  PubMed  Google Scholar 

  • Genoways, T. (2014). The Chain: Farm, Factory, and the Fate of Our Food. New York: Harper-Collins.

    Google Scholar 

  • Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. http://www.fao.org/docrep/018/i3437e/i3437e.pdf.

  • Gilbert, M., & Pfeiffer, D. U. (2012). Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: A review. Spatial and spatio-temporal epidemiology, 3(3), 173–183. doi:10.1016/j.sste.2012.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gire, S. K., Goba, A., & Andersen, K. G. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 345, 1369–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, J.-P., Herbreteau, V., Morvan, J., & Leory, E. (2005). Ebola virus circulation in Africa: A balance between clinical expression and epidemiological silence. Bulletin de la Societe de pathologie exotique, 98(3), 210–221.

    CAS  PubMed  Google Scholar 

  • Gould, P., & Wallace, R. (1994). Spatial structures and scientific paradoxes in the AIDS pandemic. Geofrafiska Annaler, 76B, 105–116.

    Article  Google Scholar 

  • Graham, J. P., Leibler, J. H., Price, L. B., Otte, J. M., Pfeiffer, D. U., Tiensin, T., et al. (2008). The animal-human interface and infectious disease in industrial food animal production: Rethinking biosecurity and biocontainment. Public Health Reports, 123, 282–299.

    PubMed  PubMed Central  Google Scholar 

  • Groseth, A., Feldmann, H., & Strong, J. E. (2007). The ecology of Ebola virus. Trends in Microbiology, 15(9), 408–416.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H. G., Pati, S., Sadowska, M., Charurat, M., & Reitz, M. (2004). Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. Journal of Virology, 78(17), 9336–9342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habito, C. F. (2011). Economy, environment and Filipino children. In F. Rosario-Braid, R. R. Tuazon, & Lopez, A. L. C. (Eds.), The future of Filipino children: Development issues and trends. UNICEF and Asian Institute of Journalism and Communication. http://www.aijc.com.ph/Megatrend%20final%20complete.pdf.

  • Halpin, K., & Mungall, B. (2007). Recent progress in henipavirus research. Comparative Immunology, Microbiology and Infectious Diseases, 30, 287–307.

    Article  PubMed  Google Scholar 

  • Harvey, D. (2005). A brief history of Neoliberalism. Oxford: Oxford University Press.

    Google Scholar 

  • Hayman, D. T., Bowen, R. A., Cryan, P. M., McCracken, G. F., O’Shea, T. J., Peel, A. J., et al. (2013). Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses Public Health, 60(1), 2–21. doi:10.1111/zph.12000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaney, L. R., Walsh, J. S. Jr., & Peterson, A. T. (2005). The roles of geological history and colonization abilities in genetic differentiation between mammalian populations in the Philippine archipelago. Journal of Biogeography, 32, 229–247.

    Article  Google Scholar 

  • Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., et al. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20888–20893. doi:10.1073/pnas.1308149110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins, V., Dibden, J., & Cocklin, C. (2012). Market instruments and the neoliberalisation of land management in rural Australia. Geoforum, 43, 377–386.

    Article  Google Scholar 

  • Hinchliffe, S. (2015). More than one world, more than one health: Re-configuring interspecies health. Social Science & Medicine, 129, 28–35.

    Article  Google Scholar 

  • Hoberg, E. P., & Brooks, D. R. (2015). Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions B, 370, 20130553.

    Article  Google Scholar 

  • Hogerwerf, L., Houben, R., Hall, K., Gilbert, M., Slingenbergh, J., & Wallace, R. G. (2010). Agroecological resilience and protopandemic influenza. Final report, Animal Health and Production Division, Food and Agriculture Organization, Rome.

    Google Scholar 

  • Horsthemeke, W., & Lefever, R. (2006). Noise-induced transitions (Vol. 15). Theory and applications in physics, chemistry, and biology. New York: Springer.

    Google Scholar 

  • Humphries-Waa, K., Drake, T., Huszar, A., Liverani, M., Borin, K., Touch, S., et al. (2013). Human H5N1 influenza infections in Cambodia 2005–2011: Case series and cost-of-illness. BMC Public Health, 13, 549. doi:10.1186/1471-2458-13-549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huyse, T., Poulin, R., & Theron, A. (2005). Speciation in parasites: A population genetics approach. Trends in Parasitology, 21(10), 469–475.

    Article  PubMed  Google Scholar 

  • Ilinykh, P. A., Lubaki, N. M., Widen, S. G., Renn, L. A., Theisen, T. C., Rabin, R. L., et al. (2015). Different temporal effects of Ebola virus VP35 and VP24 proteins on the global gene expression in human dendritic cells. Journal of Virology, 00924-15.doi:10.1128/JVI.00924-15.

    Google Scholar 

  • Jones, K. E., Mickleburgh, S. P., Sechrest, W., & Walsh, A. L. (2009). Global overview of the conservation of island bats: Importance, challenges, and opportunities. In T.H. Fleming, & P.A. Racey (Eds.), Island bats: Evolution, ecology, and conservation. Chicago: University of Chicago Press.

    Google Scholar 

  • Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., et al. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. PNAS, 110, 8399–8404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. (2011). Ebola, emerging: The limitations of culturalist discourses in epidemiology. The Journal of Global Health, 1, 1–6. http://www.ghjournal.org/?p=6194.

  • Kelly, P. F. (1998). The politics of urban-rural relations: Land use conversion in the Philippines. Environment and Urbanization, 10, 35–54.

    Google Scholar 

  • Kelly, P. F. (2000). Landscapes of globalization: Human geographies of economic change in the Philippines. London: Routledge.

    Google Scholar 

  • Kelly, P. F. (2011). Migration, agrarian transition, and rural change in Southeast Asia. Critical Asian Studies, 43(4), 479–506. doi:10.1080/14672715.2011.623516.

    Article  Google Scholar 

  • Kemeny, J., & Snell, J. (1976). Finite Markov Chains. New York: Springer.

    Google Scholar 

  • Kentikelenis, A., King, L., McKee, M., & Stuckler, D. (2014). The international monetary fund and the ebola outbreak. The Lancet Global Health. http://dx.doi.org/10.1016/S2214-109X(14)70377-8.

  • Khan, S. U., Atanasova, K. R., Krueger, W. S., Ramirez, A., & Gray, G. C. (2013). Epidemiology, geographical distribution, and economic consequences of swine zoonoses: A narrative review. Emerging Microbes & Infections, 2, e92. doi:10.1038/emi.2013.87.

    Article  Google Scholar 

  • Khasminskii, R. (1966). Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory of Probability and its Applications, 12, 144–147. (In Russian, translated by B. Seckler, 2006).

    Google Scholar 

  • Khasminskii, R. (2012). Stochastic stability of differential equations. New York: Springer.

    Book  Google Scholar 

  • Khasminskii, R., Zhu, C., & Yin, G. (2007). Stability of regime-switching diffusions. Stochastic Processes and their Applications, 117, 1037–1051.

    Article  Google Scholar 

  • Kleczkowski, A., Oleś, K., Gudowska-Nowak, E., & Gilligan, C. A. (2012). Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks. Journal of the Royal Society, Interface, 9(66), 158–169. doi:10.1098/rsif.2011.0216.

    Article  PubMed  Google Scholar 

  • Kobinger, G., Leung, A., Neufeld, J., Richardson, J. S., Falzarano, D., Smith, G., et al. (2011). Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs. Journal of Infectious Disease, 204, 200–208.

    Article  Google Scholar 

  • Kock, R. A. (2005). What is this infamous ‘Wildlife/Livestock Disease Interface’? A review of current knowledge for the African continent. In S. A. Osofsky, S. Cleaveland, W. B. Karesh, M. D. Kock, P. J. Nyhus, L. Starr & A. Yang, A. (Eds.), Conservation and development interventions at the wildlife/livestock interface implications for wildlife, livestock and human health (pp. 1–13). Gland, and Cambridge: IUCN.

    Google Scholar 

  • Kock, R. A., Alders, R., & Wallace, R. G. (2012). Wildlife, wild food, food security and human society. In Animal health and biodiversity - preparing for the future. Illustrating contributions to public health (pp. 71e79). Compendium of the OIE Global Conference on Wildlife 23–25 February 2011 Paris.

    Google Scholar 

  • Kock, R., Kock, M., Cleaveland, S., & Thomson, G. (2010). Health and disease in wild rangelands. In J. du Toit, R. Kock, & J. Deutsch (Eds.), Wild rangelands: Conserving wildlife while maintaining livestock in semi-arid ecosystems. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Knight-Jones, T. J., & Rushton, J. (2013). The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Preventive Veterinary Medicine, 112(3–4), 161–73. doi:10.1016/j.prevetmed.2013.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapus, Z. M. (2014). Pork outlook 2014: Philippines. What the experts say. pig333.com. https://www.pig333.com/what-the-experts-say/pork-outlook-2014-philippines-8158/.

  • Lawn, S. D. (2004). AIDS in Africa: The impact of coinfections on the pathogenesis of HIV-1 infection. Journal of Infection, 48, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, G., Richards, C., & Lyons, K. (2013). Food security in Australia in an era of neoliberalism, productivism and climate change. Journal of Rural Studies, 29, 30–39.

    Article  Google Scholar 

  • Lehrnbecher, T. L., Foster, C. B., Zhu, S., Venzon, D., Steinberg, S. M., Wyvill, K., et al. (2000). Variant genotypes of FcgammaRIIIA influence the development of Kaposi’s sarcoma in HIV-infected men. Blood, 95(7), 2386–2390.

    CAS  PubMed  Google Scholar 

  • Leibler, J. H., Otte, J., Roland-Holst, D., Pfeiffer, D. U., Magalhaes, R. S., Rushton, J., et al. (2009). Industrial food animal production and global health risks: Exploring the ecosystems and economics of Avian Influenza. EcoHealth, 6, 58–70.

    Article  PubMed  Google Scholar 

  • Levin, S. A., Barrett, S., Aniyar, S., Baumol, W., Bliss, C., Bolin, B., et al. (1998). Resilience in natural and socioeconomic systems. Environment and Development Economics, 3(2), 221–262.

    Article  Google Scholar 

  • Levins, R. (1968). Evolution in Changing Environments. Princeton: Princeton University Press.

    Google Scholar 

  • Leonard, C. (2014). The Meat Racket: The Secret Takeover of America’s Food Business. New York: Simon & Schuster.

    Google Scholar 

  • Leroy, E. M., Epelboin, A., Mondonge, V., Pourrut, X., Gonzalez, J. -P., Muyembe-Tamfum, J. J., et al. (2009). Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo. Democratic Republic of Congo, 2007. Vector-Borne and Zoonotic Diseases, 9(6), 723–728. doi:10.1089/vbz.2008.0167.

    Article  PubMed  Google Scholar 

  • Lewnard, J. A., Ndeffo Mbah, M. L., Alfaro-Murillo, J. A., Altice, F. L., Bawo, L., Nyenswah, T. G., et al. (2014). Dynamics and control of Ebola virus transmission in Montserrado, Liberia: A mathematical modelling analysis. Lancet Infectious Diseases. doi:10.1016/S1473-3099(14)70995-8.

    PubMed  Google Scholar 

  • Lipsitch, M., & Nowak, M.A. (1995). The evolution of virulence in sexually transmitted HIV/AIDS. Journal of Theoretical Biology, 174(4), 427–440.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. (2013). Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Analysis: Real World Applications, 14, 1286–1299.

    Article  Google Scholar 

  • Liverani, M., Waage, J., Barnett, T., Pfeiffer, D. U., Rushton, J., Rudge, J. W., et al. (2013). Understanding and managing zoonotic risk in the new livestock industries. Environmental Health Perspectives, 121, 873–877. http://dx.doi.org/10.1289/ehp.1206001.

    Google Scholar 

  • Longworth, N., Mourits, M. C., & Saatkamp, H. W. (2014). Economic analysis of HPAI control in the Netherlands II: Comparison of control strategies. Transboundary and Emerging Diseases, 61(3), 217–232. doi:10.1111/tbed.12034.

    Article  CAS  PubMed  Google Scholar 

  • Luby, S. P., Gurley, E. S., & Hossain, M. J. (2009). Transmission of human infection with Nipah Virus. Clinical Infectious Diseases, 49, 1743–1748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsh, G., Haining, J., Robinson, R., Foord, A., Yamada, M., Barr, J. A., et al. (2011). Ebola Reston virus infection in pigs: Clinical significance and transmission potential. Journal of Infectious Disease, 204(S3):S804–S809.

    Article  Google Scholar 

  • Maye, D., Dibden, J., Higgens, V., & Potter, C. (2012). Governing biosecurity in a neoliberal world: Comparative perspectives from Australia and the United Kingdom. Environment and Planning A, 44, 150–168.

    Article  Google Scholar 

  • Mayer, J. (2000). Geography, ecology and emerging infectious diseases. Social Science & Medicine, 50, 937–952.

    Article  CAS  Google Scholar 

  • McFarlane, R., Becker, N., & Field, H. (2011). Investigation of the climatic and environmental context of Hendra virus spillover events 1994–2010. PLoS ONE, 6(12), e28374. doi:10.1371/journal.pone.0028374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie, F. C. (2011). Farmer-driven innovation in agriculture: Creating opportunities for sustainability. Dissertation, Doctor of Philosophy, School of Geosciences, Faculty of Science, University of Sydney. http://ses.library.usyd.edu.au/bitstream/2123/8924/1/McKenzie_PhDThesis_Dec2011.pdf.

  • Meentemeyer, R. K., Haas, S. E., & Vaclavik, T. (2012). Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology, 50, 379–402.

    Article  CAS  PubMed  Google Scholar 

  • Mennerat, A., Nilsen, F., Ebert, D., & Skorping, A. (2010). Intensive farming: Evolutionary implications for parasites and pathogens. Evolutionary Biology, 37, 59e67.

    Article  Google Scholar 

  • Merler, S., Ajelli, M., Fumanelli, L., Gomes, M. F., Piontti, A. P., Rossi, L., et al. (2015). Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis. The Lancet Infectious Diseases. pii: S1473–3099(14)71074–6. doi:10.1016/S1473-3099(14)71074-6.

    Google Scholar 

  • Messinger, S., & Ostling, A. (2009). The consequences of spatial structure for pathogen evolution. The American Naturalist, 174, 441–454.

    Article  PubMed  Google Scholar 

  • Miranda, M. E., & Miranda, N. L. (2011). Reston ebolavirus in humans and animals in the Philippines: A review. The Journal of Infectious Diseases, 204(3), S757–60. doi:10.1093/infdis/jir296.

    Article  PubMed  Google Scholar 

  • Moog, F. A. (1991). The role of fodder trees in Philippine smallholder farms. In A. Speedy & P.-L. Pugliese (Eds.), Legume trees and other fodder trees as protein sources for livestock. Proceedings of the FAO Expert consultation held at the Malaysian Agricultural Research and Development Institute (MARDI) in Kuala Lumpur, 14–18 October 1991.

    Google Scholar 

  • Morse, S., Mazet, J. A., Woolhouse, M., Parrish, C. R., Carroll, D., Karesh, W. B., et al. (2013). Zoonoses 3: Prediction and prevention of the next pandemic zoonosis. The Lancet, 380, 1956–1965.

    Article  Google Scholar 

  • Morvan, J. M., Nakoun, E., Deubel, V., & Colyn, M. (2000). [Forest ecosystems and Ebola virus]. Bulletin de la Société de Pathologie Exotique, 93(3), 172–175. [Article in French].

    Google Scholar 

  • Murray, J. (1989). Mathematical biology. New York: Springer.

    Book  Google Scholar 

  • Murray, K. A., & Daszak, P. (2013). Human ecology in pathogenic landscapes: Two hypotheses on how land use change drives viral emergence. Current Opinion in Virology, 3(1), 79–83. doi:10.1016/j.coviro.2013.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers, K., Olsen, C. W., Setterquist, S. F., Capuano, A. W., Donham, K. J., Thacker, E. L., et al. (2006). Are swine workers in the United States at increased risk of infection with zoonotic influenza virus? Clinical Infection and Disease, 42, 14–20.

    Article  Google Scholar 

  • Mylne, A., Brad, O. J., Huang, Z., Pigott, D. M., Golding, N., Kraemer, M. U. G., et al. (2014). A comprehensive database of the geographic spread of past human Ebola outbreaks. Scientific Data, 1, 140042. doi:10.1038/sdata.2014.42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair, G., Fagnani, F., Zampieri, S., & Evans, R. J. (2007). Feedback under data rate constraints: An overview. Proceedings of the IEEE, 95, 108–137.

    Google Scholar 

  • Neumann, E. J., Kliebenstein, J. B., Johnson, C. D., Mabry, J. W., Bush, E. J., Seitzinger, A. H., et al. (2005). Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Journal of the American Veterinary Medical Association, 227, 385–392.

    Article  PubMed  Google Scholar 

  • Nfon, C. K., Leung, A., Smith, G., Embury-Hyatt, C., Kobinger, G., & Weingartl, H. M. (2013). Immunopathogenesis of severe acute respiratory disease in Zaire ebolavirus-infected pigs. PLoS One, 8(4), e61904. doi:10.1371/journal.pone.0061904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, K. C., & Rivera, W. L. (2014). Antimicrobial resistance of Salmonella enterica isolates from tonsil and jejunum with lymph node tissues of slaughtered swine in Metro Manila, Philippines. ISRN Microbiology, 2014, 364265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noer, C. L., Dabelsteen, T., Bohmann, K., & Monadjem, A. (2012). Molossid bats in an African agro-ecosystem select sugarcane fields as foraging habitat. African Zoology, 47(1), 1–11.

    Article  Google Scholar 

  • Oksendal, B. (2010). Stochastic differential equations: An introduction with applications. New York: Springer.

    Google Scholar 

  • Okubo, A. (1980). Diffusion and ecological problems: Mathematical models. Biomathematics (Vol. 10). New York: Springer.

    Google Scholar 

  • Olival, K. J., & Hayman, D. T. (2014). Filoviruses in bats: Current knowledge and future directions. Viruses, 6(4), 1759–1788. doi:10.3390/v6041759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Onwubuemeli, E. (1974). Agriculture, the theory of economic development, and the Zande Scheme. The Journal of Modern African Studies, 12(4), 569–587.

    Article  Google Scholar 

  • Otte, J., & Grace, D. (2013). Human health risks from the human-animal interface in Asia. In V. Ahuja (Ed.), Asian livestock: Challenges, opportunities and the response. Proceedings of an International Policy Forum Held in Bangkok, Thailand, 16–17 August 2012 (pp. 121–160). Animal Production and Health Commission for Asia and the Pacific, International Research Institute and Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Pagiola, S., & Holden, S. (2001). Farm household intensification decisions and the environment. In R. Lee, & C. B. Barrett (Eds.), Tradeoffs or Synergies? Agricultural Intensification, Economic Development, and the Environment. Wallingford: CAB International.

    Google Scholar 

  • Pan, Y., Zhang, W., Cui, L., Hua, X., Wang, M., & Zeng, Q. (2014). Reston virus in domestic pigs in China. Archives of Virology, 159(5), 1129–1132. doi:10.1007/s00705-012-1477-6. Epub 2012 Sep 21.

    Article  CAS  PubMed  Google Scholar 

  • Pappalardo, M., Julia, M., Howard, M. J., Rossman, J. S., Michaelis, M., & Wass, M. N. (2016). Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses. Scientific Reports, 6, 23743 doi:10.1038/srep23743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., et al. (2004). Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112(10), 1092–1098.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce-Duvet, J. M. C. (2006). The origin of human pathogens: Evaluating the role of agriculture and domestic animals in the evolution of human disease. Biological Reviews of the Cambridge Philosophical Society, 81(3), 369–382.

    Article  PubMed  Google Scholar 

  • Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences, 107(13), 5786–5791.

    Article  CAS  Google Scholar 

  • Peterson, A. T., Bauer, J. T., & Mills, J. N. (2004). Ecologic and geographic distribution of filovirus disease. Emerging Infectious Diseases, 10(1), 40–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettini, M. (2007). Geometry and topology in Hamiltonian dynamics and statistical mechanics. New York: Springer.

    Book  Google Scholar 

  • Pielou, E. (1977). Mathematical ecology. New York: Wiley.

    Google Scholar 

  • Pigott, D. M., Golding, N., Mylne, A., Huang, Z., Henry, A. J., Weiss, D. J., et al. (2014). Mapping the zoonotic niche of Ebola virus disease in Africa. eLife, 3, e04395.

    PubMed  PubMed Central  Google Scholar 

  • Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., et al. (2015). Ecological dynamics of emerging bat virus spillover. Proceedings of the Biological Sciences, 282(1798), 20142124. doi:10.1098/rspb.2014.2124.

    Article  Google Scholar 

  • Protter, P. (1990). Stochastic integration and differential equations. New York: Springer.

    Book  Google Scholar 

  • Robinson, T., et al. (2014). Mapping the global distribution of livestock. PLoS ONE, 9(5), e96084. doi:10.1371/journal.pone.0096084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roden, D. (1974). Regional inequality and rebellion in the Sudan. Geographical Review, 64(4), 498–516.

    Article  Google Scholar 

  • Ruecker, N. J., Matsune, J. C., Wilkes, G., Lapen, D. R., Topp, E., Edge, T. A., et al. (2012). Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water. Water Research, 46(16), 5135–5150.

    Article  CAS  PubMed  Google Scholar 

  • Russell, P., & McCall, S. (1973/2013). Can succession be justified? The case of the Southern Sudan. In Wai, D. M. (Ed.), The Southern Sudan: The problem of national integration. Oxon: Routledge.

    Google Scholar 

  • Saéz, A. M., Weiss, S., Nowak, K., Lapeyre, V., Zimmermann, F., Düx, A., et al. (2015). Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Molecular Medicine, 7(1), 17–23. http://embomolmed.embopress.org/content/embomm/early/2014/12/29/emmm.201404792.full.pdf.

  • Sayama, Y., Demetria, C., Saito, M., Azul, R. R., Taniguchi, S., Fukushi, S., et al. (2012). A seroepidemiologic study of Reston ebolavirus in swine in the Philippines. BMC Veterinary Research, 8, 82. doi:10.1186/1746-6148-8-82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedlock, J. L., Ingle, N. R., & Balete, D. S. (2011). Chapter 5: Enhanced sampling of bat assemblages: A field test on mount Banahaw, Luzon. Fieldiana Life and Earth Sciences, 2, 96–102.

    Article  Google Scholar 

  • Schoepp, R. J., Rossi, C. A., Khan, S. H., Goba, A., & Fair, J. N. (2014). Undiagnosed acute viral febrile illnesses, Sierra Leone. Emerging Infectious Diseases, 20, 1176–1182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedlock, J. L., Weyandt, S. E., Cororan, L., Damerow, M., Hwa, S.-H., & Pauli, B. (2008). Bat diversity in tropical forest and agro-pastoral habitats within a protected area in the Philippines. Acta Chiropterologica, 10(2), 349–358. doi:http://dx.doi.org/10.3161/150811008X41492610.3161/150811008X414926.

  • Shafie, N. J., Sah, S. A. M., Latip, N. S. A., Azman, N. M., & Khairuddin, N. L. (2011). Diversity pattern of bats at two contrasting habitat types along Kerian River, Perak. Tropical Life Sciences Research, 22(2), 13–22.

    PubMed  PubMed Central  Google Scholar 

  • Shively, G. E. (2001). Agricultural change, rural labor markets, and forest clearing: An illustrative case from the Philippines. Land Economics, 77(2), 268–284.

    Article  Google Scholar 

  • Shively, G. E., & Pagiola, S. (2001). Poverty, agricultural development, and the environment: Evidence from a frontier region of the Philippines. Paper presented at AAEA, Chicago, 5–8 August 2001. http://ageconsearch.umn.edu/bitstream/20532/1/sp01sh02.pdf.

  • Shively, G. E. & Pagiola, S. (2004). Agricultural intensification, local labor markets, and deforestation in the Philippines. Environment and Development Economics, 9, 241–266.

    Article  Google Scholar 

  • Singer, P. (2005) Who pays for bird flu? Project Syndicate, 10 November 2005. http://www.project-syndicate.org/commentary/who-pays-for-bird-flu-.

  • Smil, V. (2002). Eating meat: Evolution, patterns, and consequences. Population and Development Review, 28, 599–639.

    Article  Google Scholar 

  • Smith, D. H., Francis, D. P., Simpson, D. I. H., & Highton, R. B. (1978). The Nzara outbreak of viral haemorrhagic fever. In S. R. Pattyn (Ed.), Ebola Virus Haemorrhagic Fever Proceedings of an International Colloquium on Ebola Virus Infection and Other Haemorrhagic Fevers held in Antwerp, Belgium, 6–8 December, 1977. Amsterdam: Elsevier.

    Google Scholar 

  • Stanton, Emms & Sia (2010). The Philippines pig farming sector: A briefing for Canadian livestock genetics suppliers. Prepared for the Embassy of Canada in the Philippines and Office of Southeast Asia Regional Agri-Food Trade Commissioner Agriculture and Agri-Food Canada. http://www5.agr.gc.ca/resources/prod/Internet-Internet/MISB-DGSIM/ATS-SEA/PDF/5679-eng.pdf.

  • Stark, K. D. C. (2000). Epidemiological investigation of the influence of environmental risk factors on respiratory diseases in swine: A literature review. Veterinary Journal, 159, 37–56.

    Article  CAS  Google Scholar 

  • Stechert, C., Kolb, M., Bahadir, M., Djossa, B. A., & Fahr, J. (2014). Insecticide residues in bats along a land use-gradient dominated by cotton cultivation in northern Benin, West Africa. Environmental Science and Pollution Research International, 21(14), 8812–8821. doi:10.1007/s11356-014-2817-8.

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock’s Long Shadow. Environmental Issues and Options. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Sun, Q., Matta, H., & Chaudhary, P. M. (2005). Kaposi’s sarcoma associated herpes virus-encoded viral FLICE inhibitory protein activates transcription from HIV-1 Long Terminal Repeat via the classical NF-kappaB pathway and functionally cooperates with Tat. Retrovirology, 2, 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taniguchi, S., Watanabe, S., Masangkay, J. S., Omatsu, T., Ikegami, T., Alviola, P., et al. (2011). Reston Ebolavirus antibodies in bats, the Philippines. Emerging Infectious Diseases, 17(8), 1559–1560. doi:10.3201/eid1708.101693.

    PubMed  PubMed Central  Google Scholar 

  • Tateyama, S., Molina, H. A., Uchida, K., Yamaguchi, R., & Manuel, M.F. (2000). An epizootiological survey of necropsy cases (1993-1997) at University of the Philippines. The Journal of Veterinary Medical Science, 62(4), 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D. J., Leach, R. W., & Bruenn, J. (2010). Filoviruses are ancient and integrated into mammalian genomes. BMC Evolutionary Biology, 10, 193. doi:10.1186/1471-2148-10-193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor, P. J., Monadjem, A., & Steyn, J. N. (2013). Seasonal patterns of habitat use by insectivorous bats in a subtropical African agro-ecosystem dominated by macadamia orchards. African Journal of Ecology, 51(4), 552–561.

    Article  Google Scholar 

  • Tornatore, E., Buccellato, S., & Vetro, P. (2005). Stability of a stochastic SIR system. Physica A, 354 (11), 111–126.

    Article  Google Scholar 

  • Tuckwell, H., & Williams, R. (2007). Some properties of a simple stochastic epidemic model of SIR type. Mathematical Biosciences, 208, 76–97.

    Article  PubMed  Google Scholar 

  • Van Boeckel, T. P. (2013). Intensive poultry production and highly pathogenic avian influenza H5N1 in Thailand: Statistical and process-based models. Ph.D. Thesis, Universite Libre de Bruxelles, School of Bioengineering.

    Google Scholar 

  • Van Boeckel, T. P., Thanapongtharm, W., Robinson, T., Biradar, C. M., Xiao, X., & Gilbert, M. (2012). Improving risk models for avian influenza: The role of intensive poultry farming and flooded land during the 2004 Thailand epidemic. PLoS One, 7(11), e49528. http://dx.doi.org/10.1371/journal.pone.004952810.1371/journal.pone.0049528.

  • Verburg, P. H., & Veldkamp, A. (2004). Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology, 19, 77–98.

    Article  Google Scholar 

  • Wallace, R., Wallace D., Ullmann, J. E., & Andrews H. (1999). Deindustrialization, inner-city decay, and the hierarchical diffusion of AIDS in the USA: How neoliberal and cold war policies magnified the ecological niche for emerging infections and created a national security crisis. Environment and Planning A, 31, 113–139.

    Article  Google Scholar 

  • Wallace, R., Wallace, D., & Andrews, H. (1997). AIDS, tuberculosis, violent crime and low birthweight in eight US metropolitan regions: Public policy, stochastic resonance, and the regional diffusion of inner-city markers. Environment and Planning A, 29, 525–555.

    Article  Google Scholar 

  • Wallace, R. (2002). Immune cognition and vaccine strategy: Pathogenic challenge and ecological resilience. Open Systems and Information Dynamics, 9, 51. doi:10.1023/A:1014282912635.

    Article  Google Scholar 

  • Wallace, R. (2014). Cognition and biology: Perspectives from information theory. Cognitive Processing, 15, 1–12.

    Article  PubMed  Google Scholar 

  • Wallace, R. (2015). Noise and metabolic free energy in high-order biocognition. PeerJ PrePrints, 3, e774v1. https://peerj.com/preprints/774/.

  • Wallace, R., & Wallace, R. G. (2015). Blowback: New formal perspectives on agriculturally driven pathogen evolution and spread. Epidemiology and Infection, 143(10), 2068–2080.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, R. G. (2004). Projecting the impact of HAART on the evolution of HIV’s life history. Ecological Modelling, 176, 227–253.

    Article  Google Scholar 

  • Wallace, R. G. (2009). Breeding influenza: The political virology of offshore farming. Antipode, 41, 916–951.

    Article  Google Scholar 

  • Wallace, R. G. (2014, May 8). Collateralizing farmers. Farming Pathogens. https://farmingpathogens.wordpress.com/2014/05/08/collateralized-farmers/.

  • Wallace, R. G., Bergmann, L., Hogerwerf, L., & Gilbert, M. (2010). Are influenzas in southern China byproducts of the region’s globalizing historical present? In T. Giles-Vernick, S. Craddock, & J. Gunn (Eds.), Influenza and Public Health: Learning from Past Pandemics. London: EarthScan Press.

    Google Scholar 

  • Wallace, R. G., Bergmann, L., Kock, R., Gilbert, M., Hogerwerf, L., Wallace, R., et al. (2015). The dawn of structural one health: A new science tracking disease emergence along circuits of capital. Social Science & Medicine, 129, 68–77.

    Article  Google Scholar 

  • Wallace, R. G., Gilbert, M., Wallace, R., Pittiglio, C., Mattioli R., & Kock R. (2014). Did Ebola emerge in West Africa by a policy-driven phase change in agroecology? Environment and Planning A, 46(11), 2533–2542.

    Article  Google Scholar 

  • Wallace, R. G., & Kock, R. A. (2012). Whose food footprint? Capitalism, agriculture and the environment. Human Geography, 5(1), 63–83.

    Google Scholar 

  • Walsh, P. D., Biek, R., & Real, L. A. (2005). Wave-Like Spread of Ebola Zaire. PLoS Biol, 3(11), e371. doi:10.1371/journal.pbio.0030371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Washington, M. L., & Meltzer, M. L. (2015). Effectiveness of ebola treatment units and community care centers - Liberia, September 23-October 31, 2014. MMWR Morbidity and Mortality Weekly Report, 64(3), 67–69.

    PubMed  Google Scholar 

  • Weingartl, H. M., Embury-Hyatt, C., Nfon, C., Leung, A., Smith, G., & Kobinger, G. (2012). Transmission of Ebola virus from pigs to non-human primates. Scientific Reports, 2, 811. doi:10.1038/srep00811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weingartl, H. M., Nfon, C., & Kobinger, G. (2013). Review of Ebola Virus infections in domestic animals. In J. A. Roth, J. A. Richt, & I. A. Morozov (Eds.), Vaccines and diagnostics for transboundary animal diseases. Developments in Biologicals (Vol. 135, pp. 211–218) Basel: Karger.

    Google Scholar 

  • Wertheim, J. O., & Pond, S. L. K. (2011). Purifying selection can obscure the ancient age of viral lineages. Molecular biology and evolution, 28(12), 3355–3365. doi:10.1093/molbev/msr170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2009) WHO experts consultation on Ebola Reston pathogenicity in humans. Geneva, Switzerland. 1 April 2009. Available online at http://www.who.int/csr/resources/publications/HSE_EPR_2009_2.pdf.

  • WHO (2015, February 4). Ebola Situation Report. http://apps.who.int/ebola/en/ebola-situation-report/situation-reports/ebola-situation-report-4-february-2015.

  • WHO Ebola Response Team (2014). Ebola virus disease in West Africa-the first 9 months of the epidemic and forward projections. The New England Journal of Medicine, 371, 1481–1495.

    Article  CAS  Google Scholar 

  • WHO/International Study Team (1978). Ebola haemorrhagic fever in Sudan, 1976. Bulletin of the World Health Organization, 56(2), 247–270.

    Google Scholar 

  • Widmer, G., & Akiyoshi, D. E. (2010). Host-specific segregation of ribosomal nucleotide sequence diversity in the microsporidian Enterocytozoon bieneusi. Infection, Genetics and Evolution, 10(1), 122–128. doi:10.1016/j.meegid.2009.11.009.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M. E., Levins, R., & Spielman, A. (Eds.) (1994). Disease in evolution: Global changes and emergence of infectious diseases. New York: Annals of the New York Academy of Sciences.

    Google Scholar 

  • Wolfe, N. D., Daszak, P., Kilpatrick, A. M., & Burke, D. S. (2005). Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerging Infectious Diseases, 11(12), 1822–1827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe, N. D., Dunavan, C. P., & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447, 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Wood, J. L., Leach, M., Waldman, L., Macgregor, H., Fooks, A. R., Jones, K. E., et al. (2012). A framework for the study of zoonotic disease emergence and its drivers: Spillover of bat pathogens as a case study. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1604), 2881–2892. doi:10.1098/rstb.2012.0228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, W., Edwards, M. R., Borek, D. M., Feagins, A. R., & Mittal, A. (2014). Ebola virus VP24 targets a unique NLS binding site on Karyopherin Alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe, 13, 187–200.

    Article  CAS  Google Scholar 

  • Yuan, J. F., Zhang, Y. J., Li, J. L., Zhang, Y. Z., Wang, L. F., & Shi, Z. L. (2012). Serological evidence of ebolavirus infection in bats, China. Virology Journal, 9, 236. doi:10.1186/1743-422X-9-236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Kono, H., & Kubota, S. (2014). An integrated epidemiological and economic analysis of vaccination against Highly Pathogenic Porcine Reproductive and Respiratory Syndrome (PRRS) in Thua Thien Hue Province, Vietnam. Asian-Australasian Journal of Animal Sciences, 27(10), 1499–1512. doi:10.5713/ajas.2014.14060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Ricketts, T. H., Kreman, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. Ecological Economics, 64, 253–260. doi:10.1016/j.ecolecon.2007.02.024.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Marius Gilbert and Thomas Van Boeckel for perspicacious comment. The research reported here is part of a line of research organized as the Ebola Agroeconomic Systems Team (EAST). Partial support for this publication came from a Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography and Ecology at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Wallace .

Editor information

Editors and Affiliations

Mathematical Appendix

Mathematical Appendix

2.1.1 Epidemic Prevention Farming

The models above focus primarily on explosive epidemic outbreaks and their containment costs, incorporating as well the influence of sudden Levy jumps. In general, however, endemic levels of infection, fluctuating about some mean, would be expected, and the central question then surrounds the transition between endemic and epidemic modes.

Khasminskii’s (1966/2006, 2012, Theorem 4.1) version of Eq. (2.1) provides insight, using a linear first approximation to some complicated, multidimensional, cross-influence function expanded about a quasi-stable equilibrium point. This gives the system of stochastic equations

$$ \displaystyle\begin{array}{rcl} dx_{t}^{i} =\sum _{ j=1}^{l}b_{ i}^{j}x_{ t}^{j}dt +\sum _{ r=1}^{n}\sum _{ j=1}^{l}\sigma _{ i,r}^{j}x_{ t}^{j}dW_{ t}^{r}\quad i = 1,\ldots,l& &{}\end{array}$$
(2.21)

where dW t r is white noise and the b and σ terms are constants.

Khasminskii defines two associated matrices,

$$\displaystyle{a_{i,j}(x) =\sum _{ k,s=1}^{l}\sum _{ r=1}^{n}\sigma _{ i,r}^{k}\sigma _{ j,r}^{s}x^{k}x^{s},\,\,\,\mathbf{B} = \vert \vert b_{ i}^{j}\vert \vert }$$

under the condition that, for A, the inner product condition

$$\displaystyle{ (\mathbf{A}(x)\alpha,\alpha ) \geq m\vert x\vert ^{2}\vert \alpha \vert ^{2} }$$
(2.22)

always holds.

Khasminskii invokes two new variates, λ = x∕ | x | on the unit sphere, and ρ = log[ | x | ], expanding d ρ t using the Ito chain rule to obtain

$$\displaystyle\begin{array}{rcl} d\rho _{t}& =& \left [(\mathbf{B}\lambda _{t},\lambda _{t}) + \frac{1} {2}\sum _{i=1}^{l}a_{ i,i}(\lambda _{t}) -\sum _{i,j=1}^{l}a_{ i,j}(\lambda _{t})\lambda _{t}^{i}\lambda _{ t}^{j}\right ]dt \\ & & +\sum _{r}(\sigma (r)\lambda _{t},\lambda _{t})dW_{t}^{r} {}\end{array}$$
(2.23)

where σ(r) =  | | σ i, r j | | , i, j = 1, , l.

Define

$$\displaystyle\begin{array}{rcl} Q(\lambda )& =& (\mathbf{B}\lambda,\lambda ) + \frac{1} {2}\sum _{i=1}^{l}a_{ i,i}(\lambda ) -\sum _{i,j=1}^{l}a_{ i,j}(\lambda )\lambda ^{i}\lambda ^{j} {}\\ J& =& \int Q(\lambda )d\lambda {}\\ \end{array}$$

where the integral is taken over the unit sphere. (Khasminskii 1966/20062012, Theorem 4.1) shows that, if J < 0, the complex stochastic process converges to an endemic equilibrium distribution. If J > 0, then the probability that | x t  | →  as t →  is 1.

Thus, for any given cross-influence matrix B, there is a set of structures defined by the matrix A—under the condition of Eq. (2.22)—that will contain a pathogen outbreak to endemic levels. Conversely, given an endemic distribution, sufficient alteration of either the structural matrix B or of the “noise” matrix A would trigger an epidemic outbreak | x t  | → .

Extension of this result involving jump processes can be found in Khasminskii et al. (2007).

2.1.2 Large Deviations

Something similar to Eq. (2.14) can be simply derived via a standard large deviations argument.

Following Dembo and Zeitouni (1998), let X 1, X 2, … X n be a sequence of independent, standard Normal, real-valued random variables and let

$$\displaystyle{ S_{n} = \frac{1} {n}\sum _{j=1}^{n}X_{ j} }$$
(2.24)

Since S n is again a Normal random variable with zero mean and variance 1∕n, for all δ > 0

$$\displaystyle{ \lim _{n\rightarrow \infty }P(\vert S_{n}\vert \geq \delta ) = 0 }$$
(2.25)

where P is the probability that the absolute value of S n is greater or equal to δ. Some manipulation, however, gives

$$\displaystyle{ P(\vert S_{n}\vert \geq \delta ) = 1 - \frac{1} {\sqrt{2}\pi }\int _{-\delta \sqrt{n}}^{\delta \sqrt{n}}\exp (-x^{2}/2)dx }$$
(2.26)

so that

$$\displaystyle{ \lim _{n\rightarrow \infty }\frac{\log P(\vert S_{n}\vert \geq \delta )} {n} = -\delta ^{2}/2 }$$
(2.27)

This can be rewritten for large n as

$$\displaystyle{ P(\vert S_{n}\vert \geq \delta ) \approx \exp (-n\delta ^{2}/2) }$$
(2.28)

That is, for large n, the probability of a large deviation in S n follows something much like the asymptotic equipartition relation of the Shannon–McMillan Theorem.

This result can be generalized to more complicated probability spaces using Sanov’s Theorem, the Gartner–Ellis Theorem, and related developments (Dembo and Zeitouni 1998) to show that large deviations paths of length n all have approximately the probability

$$\displaystyle{ P(n) \propto \exp (-n\mathcal{H}[\mathbf{X}]) }$$
(2.29)

where \(\mathcal{H}\) is of the form − i P i log(P i ) for some probability distribution. Under the conditions of our analysis, P(n) is the probability of an excursion from the absorbing state of n = zero infections. \(\mathcal{H}\) thus quantifies an information source representing the active imposition of control strategies to prevent a large-scale outbreak of infection, and the Black–Scholes cost analysis carries through.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wallace, R., Bergmann, L., Hogerwerf, L., Kock, R., Wallace, R.G. (2016). Ebola in the Hog Sector: Modeling Pandemic Emergence in Commodity Livestock. In: Wallace, R., Wallace, R. (eds) Neoliberal Ebola. Springer, Cham. https://doi.org/10.1007/978-3-319-40940-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40940-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40939-9

  • Online ISBN: 978-3-319-40940-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics