Skip to main content

Spatial Solutions Based on the Finite Element Method

  • Chapter
  • First Online:
  • 458 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 47))

Abstract

This chapter presents a 3D solution to the problem of medium deformation in conditions of its simultaneous solidification. The proposed solution consists of four sub-models. These are a mechanical model based upon a rigid-plastic solution, and a thermal model based on the Fourier equation solution. Another key component model is the model of function of stress versus strain change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Malinowski Z (2005) Numeryczne modele w przeróbce plastycznej i wymianie ciepła. AGH, Krakow, Poland

    Google Scholar 

  2. Hadala B, Cebo-Rudnicka A, Malinowski Z et al (2011) The influence of thermal stresses and strand bending on surface defects formation in continuously cast strands. Arch Metall Mater 56:367–377

    Google Scholar 

  3. Malinowski Z, Rywotycki M (2009) Modelling of the strand and mold temperature in the continuous steel caster. Arch Civ Mech Eng 9:59–73

    Article  Google Scholar 

  4. Milkowska-Piszczek K, Rywotycki M, Falkus J et al (2015) A comparison of models describing heat transfer in the primary cooling zone of a continuous casting machine. Arch Metall Mater 60:239–244

    Google Scholar 

  5. Glowacki M (1998) Termomechaniczno-mikrostrukturalny model walcowania w wykrojach kształtowych. AGH, Krakow, Poland

    Google Scholar 

  6. Glowacki M (2012) Modelowanie matematyczne i symulacja odkształcania metali. AGH, Krakow, Poland

    Google Scholar 

  7. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier Butterworth-Heinemann, Oxford, UK

    MATH  Google Scholar 

  8. Glowacki M, Hojny M, Kuziak R (2012) Computer aided investigation of mechanical properties of semi-solid steels. AGH, Krakow, Poland

    Google Scholar 

  9. Hojny M (2014) Projektowanie dedykowanych systemów symulacji odkształcania stali w stanie półciekłym. Wzorek, Krakow, Poland

    Google Scholar 

  10. Lewis RW, Roberts PM (1987) Finite element simulation of solidification problems. Appl Sci Res 44:61–92

    Article  MATH  Google Scholar 

  11. Szczygiol N (1997) Równania krzepnięcia w ujęciu metody elementów skończonych. Solidif Met Alloy 30:221–232

    Google Scholar 

  12. Voller VR, Swaminathan CR, Thomas BG (1990) Fixed grid techniques for phase change problems: a review. Int J Numer Methods Eng 30:875–898

    Article  MATH  Google Scholar 

  13. Pietrzyk M (1992) Metody numeryczne w przerobce plastycznej metali. AGH, Krakow

    Google Scholar 

  14. Zhu MF, Hong CP (2001) A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys. ISIJ Int 41:436–445

    Google Scholar 

  15. Gandin ChA, Rappaz M (1994) A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta met mater 42:2233–2246

    Article  Google Scholar 

  16. Rappaz M, Gandin ChA, Desbiolles JL et al (1996) Prediction of grain structures in various solidification processes. Metall Mater Trans 27A:695–705

    Article  Google Scholar 

  17. Gandin ChA, Rappaz M (1997) A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater 45:2187–2195

    Article  Google Scholar 

  18. Gandin ChA, Desbiolles JL, Rappaz M et al (1999) A three-dimensional cellular automaton–finite element model for the prediction of solidification grain structures. Metall Mater Trans 30A:3153–3165

    Article  Google Scholar 

  19. Brown SGR, Brucet NB (1995) Three-dimensional cellular automaton models of microstructural evolution during solidification. J Mater Sci 30:1144–1150

    Article  Google Scholar 

  20. Madej L (2010) Development of the modelling strategy for the strain localization simulation based on the digital material representation. AGH, Krakow

    Google Scholar 

  21. Biscuola VB, Martorano MA (2010) Micro-macroscopic coupling in the cellular automaton model of solidification. Mat Res 13:479–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Hojny .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hojny, M. (2017). Spatial Solutions Based on the Finite Element Method. In: Modeling Steel Deformation in the Semi-Solid State. Advanced Structured Materials, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-40863-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40863-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40861-3

  • Online ISBN: 978-3-319-40863-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics