Skip to main content

Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy

  • Chapter
  • First Online:
Increasing the Therapeutic Ratio of Radiotherapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Radiotherapy is a commonly used local and regional treatment for cancer. Although important advances in radiation treatment delivery have been made in recent years, normal tissue damage remains a major cause of toxicity from radiotherapy and chemoradiotherapy regimens. Efforts to reduce normal tissue injury have included technical improvements to minimize normal tissue exposure to high doses of irradiation. Extensive preclinical research and a growing field of clinical research are focusing on the development of agents to protect normal tissues from the deleterious effects of irradiation. In this review, we discuss the characteristics of these agents, the research required to translate these agents into clinical trials, and highlight some challenges and successes in these efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durante M, Loeffler JS (2010) Charged particles in radiation oncology. Nat Rev Clin Oncol 7(1):37–43

    Article  PubMed  Google Scholar 

  2. Moding EJ, Kastan MB, Kirsch DG (2013) Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 12(7):526–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu KK, Pajak TF, Trotti A et al (2000) A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys 48(1):7–16

    Article  CAS  PubMed  Google Scholar 

  4. Stone HB, Moulder JE, Coleman CN et al (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4, 2003. Radiat Res 162(6):711–728

    Article  CAS  PubMed  Google Scholar 

  5. Citrin D, Cotrim AP, Hyodo F et al (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Camphausen K, Citrin D, Krishna MC et al (2005) Implications for tumor control during protection of normal tissues with antioxidants. J Clin Oncol 23(24):5455–5457

    Article  CAS  PubMed  Google Scholar 

  7. Xavier S, Yamada K, Samuni AM et al (2002) Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim Biophys Acta 1573(2):109–120

    Article  CAS  PubMed  Google Scholar 

  8. Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12(6):738–747

    Article  CAS  PubMed  Google Scholar 

  9. Calabro-Jones PM, Fahey RC, Smoluk GD et al (1985) Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int J Radiat Biol Relat Stud Phys Chem Med 47(1):23–27

    Article  CAS  PubMed  Google Scholar 

  10. Yuhas JM (1980) Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. Cancer Res 40(5):1519–1524

    CAS  PubMed  Google Scholar 

  11. Giatromanolaki A, Sivridis E, Maltezos E et al (2002) Down-regulation of intestinal-type alkaline phosphatase in the tumor vasculature and stroma provides a strong basis for explaining amifostine selectivity. Semin Oncol 29(6 Suppl 19):14–21

    Article  CAS  PubMed  Google Scholar 

  12. Purdie JW, Inhaber ER, Schneider H et al (1983) Interaction of cultured mammalian cells with WR-2721 and its thiol, WR-1065: implications for mechanisms of radioprotection. Int J Radiat Biol Relat Stud Phys Chem Med 43(5):517–527

    Article  CAS  PubMed  Google Scholar 

  13. Glover D, Negendank W, Delivoria-Papadopoulos M et al (1984) Alterations in oxygen transport following WR-2721. Int J Radiat Oncol Biol Phys 10(9):1565–1568

    Article  CAS  PubMed  Google Scholar 

  14. Nicolatou-Galitis O, Sarri T, Bowen J et al (2013) Systematic review of amifostine for the management of oral mucositis in cancer patients. Support Care Cancer 21(1):357–364

    Article  PubMed  Google Scholar 

  15. Werner-Wasik M, Axelrod RS, Friedland DP et al (2002) Phase II: trial of twice weekly amifostine in patients with non-small cell lung cancer treated with chemoradiotherapy. Semin Radiat Oncol 12(1 Suppl 1):34–39

    Article  PubMed  Google Scholar 

  16. Antonadou D (2002) Radiotherapy or chemotherapy followed by radiotherapy with or without amifostine in locally advanced lung cancer. Semin Radiat Oncol 12(1 Suppl 1):50–58

    Article  PubMed  Google Scholar 

  17. Komaki R, Lee JS, Milas L et al (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58(5):1369–1377

    Article  CAS  PubMed  Google Scholar 

  18. Movsas B, Scott C, Langer C et al (2005) Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: radiation therapy oncology group trial 98-01. J Clin Oncol 23(10):2145–2154

    Article  CAS  PubMed  Google Scholar 

  19. Sarna L, Swann S, Langer C et al (2008) Clinically meaningful differences in patient-reported outcomes with amifostine in combination with chemoradiation for locally advanced non-small-cell lung cancer: an analysis of RTOG 9801. Int J Radiat Oncol Biol Phys 72(5):1378–1384

    Article  PubMed  Google Scholar 

  20. Kouvaris J, Kouloulias V, Kokakis J et al (2002) The cytoprotective effect of amifostine in acute radiation dermatitis: a retrospective analysis. Eur J Dermatol 12(5):458–462

    CAS  PubMed  Google Scholar 

  21. Singh AK, Menard C, Guion P et al (2006) Intrarectal amifostine suspension may protect against acute proctitis during radiation therapy for prostate cancer: a pilot study. Int J Radiat Oncol Biol Phys 65(4):1008–1013

    Article  CAS  PubMed  Google Scholar 

  22. Simone NL, Menard C, Soule BP et al (2008) Intrarectal amifostine during external beam radiation therapy for prostate cancer produces significant improvements in Quality of Life measured by EPIC score. Int J Radiat Oncol Biol Phys 70(1):90–95

    Article  CAS  PubMed  Google Scholar 

  23. Koukourakis MI, Panteliadou M, Abatzoglou IM et al (2013) Postmastectomy hypofractionated and accelerated radiation therapy with (and without) subcutaneous amifostine cytoprotection. Int J Radiat Oncol Biol Phys 85(1):e7–e13

    Article  CAS  PubMed  Google Scholar 

  24. Antonadou D, Coliarakis N, Synodinou M et al (2001) Randomized phase III trial of radiation treatment +/- amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys 51(4):915–922

    Article  CAS  PubMed  Google Scholar 

  25. Samuni A, Goldstein S, Russo A et al (2002) Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines. J Am Chem Soc 124(29):8719–8724

    Article  CAS  PubMed  Google Scholar 

  26. Soule BP, Hyodo F, Matsumoto K et al (2007) Therapeutic and clinical applications of nitroxide compounds. Antioxid Redox Signal 9(10):1731–1743

    Article  CAS  PubMed  Google Scholar 

  27. Soule BP, Hyodo F, Matsumoto K et al (2007) The chemistry and biology of nitroxide compounds. Free Radic Biol Med 42(11):1632–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hahn SM, Tochner Z, Krishna CM et al (1992) Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res 52(7):1750–1753

    CAS  PubMed  Google Scholar 

  29. Hahn SM, Krishna CM, Samuni A et al (1994) Potential use of nitroxides in radiation oncology. Cancer Res 54 (7 Suppl):2006s–2010s

    Google Scholar 

  30. Cuscela D, Coffin D, Lupton GP et al (1996) Protection from radiation-induced alopecia with topical application of nitroxides: fractionated studies. Cancer J Sci Am 2(5):273–278

    CAS  PubMed  Google Scholar 

  31. Goffman T, Cuscela D, Glass J et al (1992) Topical application of nitroxide protects radiation-induced alopecia in guinea pigs. Int J Radiat Oncol Biol Phys 22(4):803–806

    Article  CAS  PubMed  Google Scholar 

  32. Cotrim AP, Hyodo F, Matsumoto K et al (2007) Differential radiation protection of salivary glands versus tumor by Tempol with accompanying tissue assessment of Tempol by magnetic resonance imaging. Clin Cancer Res 13(16):4928–4933

    Article  CAS  PubMed  Google Scholar 

  33. Hahn SM, Sullivan FJ, DeLuca AM et al (1997) Evaluation of tempol radioprotection in a murine tumor model. Free Radic Biol Med 22(7):1211–1216

    Article  CAS  PubMed  Google Scholar 

  34. Davis RM, Mitchell JB, Krishna MC (2011) Nitroxides as cancer imaging agents. Anticancer Agents Med Chem 11(4):347–358

    Article  CAS  PubMed  Google Scholar 

  35. Metz JM, Smith D, Mick R et al (2004) A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 10(19):6411–6417

    Article  CAS  PubMed  Google Scholar 

  36. Chitra S, Shyamala Devi CS (2008) Effects of radiation and alpha-tocopherol on saliva flow rate, amylase activity, total protein and electrolyte levels in oral cavity cancer. Indian J Dent Res 19(3):213–218

    Article  CAS  PubMed  Google Scholar 

  37. Bairati I, Meyer F, Gelinas M et al (2005) Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol 23(24):5805–5813

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira PR, Fleck JF, Diehl A et al (2004) Protective effect of alpha-tocopherol in head and neck cancer radiation-induced mucositis: a double-blind randomized trial. Head Neck 26(4):313–321

    Article  PubMed  Google Scholar 

  39. Misirlioglu CH, Demirkasimoglu T, Kucukplakci B et al (2007) Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med Oncol 24(3):308–311

    Article  CAS  PubMed  Google Scholar 

  40. Jacobson G, Bhatia S, Smith BJ et al (2013) Randomized trial of pentoxifylline and vitamin E vs standard follow-up after breast irradiation to prevent breast fibrosis, evaluated by tissue compliance meter. Int J Radiat Oncol Biol Phys 85(3):604–608

    Article  CAS  PubMed  Google Scholar 

  41. Guo H, Seixas-Silva JA Jr, Epperly MW et al (2003) Prevention of radiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (SOD2) transgene. Radiat Res 159(3):361–370

    Article  CAS  PubMed  Google Scholar 

  42. Stickle RL, Epperly MW, Klein E et al (1999) Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase transgene. Radiat Oncol Investig 7(4):204–217

    Article  CAS  PubMed  Google Scholar 

  43. Epperly MW, Bray JA, Krager S et al (1999) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys 43(1):169–181

    Article  CAS  PubMed  Google Scholar 

  44. Epperly MW, Travis EL, Sikora C et al (1999) Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transplant 5(4):204–214

    Article  CAS  PubMed  Google Scholar 

  45. Epperly MW, Defilippi S, Sikora C et al (2000) Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7(12):1011–1018

    Article  CAS  PubMed  Google Scholar 

  46. Acuna-Castroviejo D, Martin M, Macias M et al (2001) Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 30(2):65–74

    Article  CAS  PubMed  Google Scholar 

  47. Vijayalaxmi MML, Reiter RJ et al (1999) Melatonin and protection from whole-body irradiation: survival studies in mice. Mutat Res 425(1):21–27

    Article  CAS  PubMed  Google Scholar 

  48. Blickenstaff RT, Brandstadter SM, Reddy S et al (1994) Potential radioprotective agents. 1. Homologs of melatonin. J Pharm Sci 83(2):216–218

    Article  CAS  PubMed  Google Scholar 

  49. Mihandoost E, Shirazi A, Mahdavi SR et al (2014) Can melatonin help us in radiation oncology treatments? Biomed Res Int 2014:578137

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jang SS, Kim WD, Park WY (2009) Melatonin exerts differential actions on X-ray radiation-induced apoptosis in normal mice splenocytes and Jurkat leukemia cells. J Pineal Res 47(2):147–155

    Article  CAS  PubMed  Google Scholar 

  51. Alonso-Gonzalez C, Gonzalez A, Martinez-Campa C et al (2015) Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair. J Pineal Res 58(2):189–197

    Article  CAS  PubMed  Google Scholar 

  52. Berk L, Berkey B, Rich T et al (2007) Randomized phase II trial of high-dose melatonin and radiation therapy for RPA class 2 patients with brain metastases (RTOG 0119). Int J Radiat Oncol Biol Phys 68(3):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57(2):131–146

    Article  CAS  PubMed  Google Scholar 

  54. Medina-Navarro R, Duran-Reyes G, Hicks JJ (1999) Pro-oxidating properties of melatonin in the in vitro interaction with the singlet oxygen. Endocr Res 25(3-4):263–280

    Article  CAS  PubMed  Google Scholar 

  55. Wolfler A, Caluba HC, Abuja PM et al (2001) Prooxidant activity of melatonin promotes fas-induced cell death in human leukemic Jurkat cells. FEBS Lett 502(3):127–131

    Article  CAS  PubMed  Google Scholar 

  56. Hall EJ, Giaccia AJ (2006) Radiobiology for the Radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  57. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Metcalfe C, Kljavin NM, Ybarra R et al (2014) Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14(2):149–159

    Article  CAS  PubMed  Google Scholar 

  59. Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6(9):702–713

    Article  CAS  PubMed  Google Scholar 

  60. Iglesias-Bartolome R, Patel V, Cotrim A et al (2012) mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11(3):401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mizumatsu S, Monje ML, Morhardt DR et al (2003) Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 63(14):4021–4027

    CAS  PubMed  Google Scholar 

  62. Bertho JM, Frick J, Prat M et al (2005) Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model. Int J Radiat Oncol Biol Phys 63(3):911–920

    Article  CAS  PubMed  Google Scholar 

  63. Uckun FM, Souza L, Waddick KG et al (1990) In vivo radioprotective effects of recombinant human granulocyte colony-stimulating factor in lethally irradiated mice. Blood 75(3):638–645

    CAS  PubMed  Google Scholar 

  64. Cui YH, Suh Y, Lee HJ et al (2015) Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor. Oncogene 34:5372–5382

    Google Scholar 

  65. Singh VK, Romaine PL, Seed TM (2015) Medical countermeasures for radiation exposure and related injuries: characterization of medicines, FDA-approval status and inclusion into the strategic national stockpile. Health Phys 108(6):607–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burdelya LG, Gleiberman AS, Toshkov I et al (2012) Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 83(1):228–234

    Article  CAS  PubMed  Google Scholar 

  67. Burdelya LG, Krivokrysenko VI, Tallant TC et al (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320(5873):226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krivokrysenko VI, Shakhov AN, Singh VK et al (2012) Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure. J Pharmacol Exp Ther 343(2):497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Finch PW, Rubin JS (2004) Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 91:69–136

    Article  CAS  PubMed  Google Scholar 

  70. Lombaert IM, Brunsting JF, Wierenga PK et al (2008) Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool. Stem Cells 26(10):2595–2601

    Article  CAS  PubMed  Google Scholar 

  71. Farrell CL, Rex KL, Kaufman SA et al (1999) Effects of keratinocyte growth factor in the squamous epithelium of the upper aerodigestive tract of normal and irradiated mice. Int J Radiat Biol 75(5):609–620

    Article  CAS  PubMed  Google Scholar 

  72. Farrell CL, Bready JV, Rex KL et al (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58(5):933–939

    CAS  PubMed  Google Scholar 

  73. Cai Y, Wang W, Liang H et al (2013) Keratinocyte growth factor pretreatment prevents radiation-induced intestinal damage in a mouse model. Scand J Gastroenterol 48(4):419–426

    Article  CAS  PubMed  Google Scholar 

  74. Spielberger R, Stiff P, Bensinger W et al (2004) Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 351(25):2590–2598

    Article  CAS  PubMed  Google Scholar 

  75. Brizel DM, Murphy BA, Rosenthal DI et al (2008) Phase II study of palifermin and concurrent chemoradiation in head and neck squamous cell carcinoma. J Clin Oncol 26(15):2489–2496

    Article  CAS  PubMed  Google Scholar 

  76. Finch PW, Mark Cross LJ, McAuley DF et al (2013) Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 17(9):1065–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bouma BN, Marx PF, Mosnier LO et al (2001) Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). Thromb Res 101(5):329–354

    Article  CAS  PubMed  Google Scholar 

  78. Mosnier LO, Zlokovic BV, Griffin JH (2007) The cytoprotective protein C pathway. Blood 109(8):3161–3172

    Article  CAS  PubMed  Google Scholar 

  79. Wang J, Zheng H, Ou X et al (2002) Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 160(6):2063–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Richter KK, Fink LM, Hughes BM et al (1998) Differential effect of radiation on endothelial cell function in rectal cancer and normal rectum. Am J Surg 176(6):642–647

    Article  CAS  PubMed  Google Scholar 

  81. Richter KK, Fink LM, Hughes BM et al (1997) Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother Oncol 44(1):65–71

    Article  CAS  PubMed  Google Scholar 

  82. Geiger H, Pawar SA, Kerschen EJ et al (2012) Pharmacological targeting of the thrombomodulin-activated protein C pathway mitigates radiation toxicity. Nat Med 18(7):1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu G, Wu H, Zhang J et al (2015) Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 87:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deng W, Kimura Y, Gududuru V et al (2015) Mitigation of the hematopoietic and gastrointestinal acute radiation syndrome by octadecenyl thiophosphate, a small molecule mimic of lysophosphatidic acid. Radiat Res 183(4):465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patil R, Szabo E, Fells JI et al (2015) Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist. Chem Biol 22(2):206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee CL, Lento WE, Castle KD et al (2014) Inhibiting glycogen synthase kinase-3 mitigates the hematopoietic acute radiation syndrome in mice. Radiat Res 181(5):445–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Landauer M, Kohler PA, Kortek Y et al (2009) Long-term care benefits and services in Europe. Gerontology 55(5):481–490

    Article  PubMed  Google Scholar 

  88. Zhou Y, Mi MT (2005) Genistein stimulates hematopoiesis and increases survival in irradiated mice. J Radiat Res 46(4):425–433

    Article  CAS  PubMed  Google Scholar 

  89. Davis TA, Clarke TK, Mog SR et al (2007) Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival. Int J Radiat Biol 83(3):141–151

    Article  CAS  PubMed  Google Scholar 

  90. Chan RJ, Mann J, Tripcony L et al (2014) Natural oil-based emulsion containing allantoin versus aqueous cream for managing radiation-induced skin reactions in patients with cancer: a phase 3, double-blind, randomized, controlled trial. Int J Radiat Oncol Biol Phys 90(4):756–764

    Article  CAS  PubMed  Google Scholar 

  91. Stefanelli A, Forte L, Medoro S et al (2014) Topical use of phytotherapic cream (Capilen(R) cream) to prevent radiodermatitis in breast cancer: a prospective historically controlled clinical study. G Ital Dermatol Venereol 149(1):107–113

    CAS  PubMed  Google Scholar 

  92. Herst PM, Bennett NC, Sutherland AE et al (2014) Prophylactic use of Mepitel Film prevents radiation-induced moist desquamation in an intra-patient randomised controlled clinical trial of 78 breast cancer patients. Radiother Oncol 110(1):137–143

    Article  CAS  PubMed  Google Scholar 

  93. Kong M, Hong SE (2013) Topical use of recombinant human epidermal growth factor (EGF)-based cream to prevent radiation dermatitis in breast cancer patients: a single-blind randomized preliminary study. Asian Pac J Cancer Prev 14(8):4859–4864

    Article  PubMed  Google Scholar 

  94. Ryan JL, Heckler CE, Ling M et al (2013) Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 180(1):34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hindley A, Zain Z, Wood L et al (2014) Mometasone furoate cream reduces acute radiation dermatitis in patients receiving breast radiation therapy: results of a randomized trial. Int J Radiat Oncol Biol Phys 90(4):748–755

    Article  CAS  PubMed  Google Scholar 

  96. Ulff E, Maroti M, Serup J et al (2013) A potent steroid cream is superior to emollients in reducing acute radiation dermatitis in breast cancer patients treated with adjuvant radiotherapy. A randomised study of betamethasone versus two moisturizing creams. Radiother Oncol 108(2):287–292

    Article  CAS  PubMed  Google Scholar 

  97. Anscher MS, Thrasher B, Rabbani Z et al (2006) Antitransforming growth factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys 65(3):876–881

    Article  CAS  PubMed  Google Scholar 

  98. Xavier S, Piek E, Fujii M et al (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 279(15):15167–15176

    Article  CAS  PubMed  Google Scholar 

  99. Flanders KC, Sullivan CD, Fujii M et al (2002) Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 160(3):1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roberts AB, Piek E, Bottinger EP et al (2001) Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest 120(1 Suppl):43S–47S

    Article  CAS  PubMed  Google Scholar 

  101. Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Massague J, Heino J, Laiho M (1991) Mechanisms in TGF-beta action. Ciba Found Symp 157:51–59, discussion 59-65

    CAS  PubMed  Google Scholar 

  103. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11(10):790–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ostrau C, Hulsenbeck J, Herzog M et al (2009) Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol 92(3):492–499

    Article  CAS  PubMed  Google Scholar 

  105. Williams JP, Hernady E, Johnston CJ et al (2004) Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res 161(5):560–567

    Article  CAS  PubMed  Google Scholar 

  106. Haydont V, Gilliot O, Rivera S et al (2007) Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys 68(5):1471–1482

    Article  CAS  PubMed  Google Scholar 

  107. Haydont V, Bourgier C, Vozenin-Brotons MC (2007) Rho/ROCK pathway as a molecular target for modulation of intestinal radiation-induced toxicity. Br J Radiol 80(1):S32–S40

    Google Scholar 

  108. Bourgier C, Haydont V, Milliat F et al (2005) Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut 54(3):336–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller AC, Kariko K, Myers CE et al (1993) Increased radioresistance of EJras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. Int J Cancer 53(2):302–307

    Article  CAS  PubMed  Google Scholar 

  111. Fritz G, Brachetti C, Kaina B (2003) Lovastatin causes sensitization of HeLa cells to ionizing radiation-induced apoptosis by the abrogation of G2 blockage. Int J Radiat Biol 79(8):601–610

    Article  CAS  PubMed  Google Scholar 

  112. Horton JA, Chung EJ, Hudak KE et al (2013) Inhibition of radiation-induced skin fibrosis with imatinib. Int J Radiat Biol 89(3):162–170

    Article  CAS  PubMed  Google Scholar 

  113. Abdollahi A, Li M, Ping G et al (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201(6):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Daniels CE, Wilkes MC, Edens M et al (2004) Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 114(9):1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown NJ, Vaughan DE (1998) Angiotensin-converting enzyme inhibitors. Circulation 97(14):1411–1420

    Article  CAS  PubMed  Google Scholar 

  116. Ward WF, Kim YT, Molteni A et al (1988) Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys 15(1):135–140

    Article  CAS  PubMed  Google Scholar 

  117. Molteni A, Moulder JE, Cohen EF et al (2000) Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol 76(4):523–532

    Article  CAS  PubMed  Google Scholar 

  118. Kma L, Gao F, Fish BL et al (2012) Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. J Radiat Res 53(1):10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Medhora M, Gao F, Wu Q et al (2014) Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 182(5):545–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Matsuura-Hachiya Y, Arai KY, Ozeki R et al (2013) Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles. Biochem Biophys Res Commun 442(1-2):38–43

    Article  CAS  PubMed  Google Scholar 

  121. Kohl RR, Kolozsvary A, Brown SL et al (2007) Differential radiation effect in tumor and normal tissue after treatment with ramipril, an angiotensin-converting enzyme inhibitor. Radiat Res 168(4):440–445

    Article  CAS  PubMed  Google Scholar 

  122. Wolf G, Mueller E, Stahl RA et al (1993) Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J Clin Invest 92(3):1366–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hahn AW, Resink TJ, Bernhardt J et al (1991) Stimulation of autocrine platelet--derived growth factor AA-homodimer and transforming growth factor beta in vascular smooth muscle cells. Biochem Biophys Res Commun 178(3):1451–1458

    Article  CAS  PubMed  Google Scholar 

  124. Jiang X, Jiang X, Qu C et al (2015) Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats. Cytotherapy 17(5):560–570

    Article  CAS  PubMed  Google Scholar 

  125. Horton JA, Hudak KE, Chung EJ et al (2013) Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells 31(10):2231–2241

    Article  CAS  PubMed  Google Scholar 

  126. Chen Y, Li Y, Wang X et al (2015) Amelioration of hyperbilirubinemia in gunn rats after transplantation of human induced pluripotent stem cell-derived hepatocytes. Stem Cell Reports 5(1):22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Landis CS, Zhou H, Liu L et al (2015) Liver regeneration and energetic changes in rats following hepatic radiation therapy and hepatocyte transplantation by (3)(1)P MRSI. Liver Int 35(4):1145–1151

    Article  CAS  PubMed  Google Scholar 

  128. Jin IG, Kim JH, Wu HG et al (2015) Effect of bone marrow-derived stem cells and bone morphogenetic protein-2 on treatment of osteoradionecrosis in a rat model., J Craniomaxillofac Surg

    Google Scholar 

  129. Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: a review. Front Oncol 2:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11(5):352–363

    Article  CAS  PubMed  Google Scholar 

  131. Smart D, Garcia Glaessner A, Palmieri D et al (2015) Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis. J Clin Exp Metastasis 32:717–727

    Google Scholar 

  132. Ryu S, Kolozsvary A, Jenrow KA et al (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J Neurooncol 82(2):119–124

    Article  CAS  PubMed  Google Scholar 

  133. Lee TC, Greene-Schloesser D, Payne V et al (2012) Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat Res 178(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jenrow KA, Brown SL, Liu J et al (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol 5:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Greene-Schloesser D, Payne V, Peiffer AM et al (2014) The peroxisomal proliferator-activated receptor (PPAR) alpha agonist, fenofibrate, prevents fractionated whole-brain irradiation-induced cognitive impairment. Radiat Res 181(1):33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao W, Payne V, Tommasi E et al (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 67(1):6–9

    Article  CAS  PubMed  Google Scholar 

  137. Jiang X, Engelbach JA, Yuan L et al (2014) Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain. Clin Cancer Res 20(10):2695–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gondi V, Pugh SL, Tome WA et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol 32(34):3810–3816

    Article  PubMed  PubMed Central  Google Scholar 

  139. Shaw EG, Rosdhal R, D'Agostino RB Jr et al (2006) Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol 24(9):1415–1420

    Article  CAS  PubMed  Google Scholar 

  140. Castellino SM, Tooze JA, Flowers L et al (2012) Toxicity and efficacy of the acetylcholinesterase (AChe) inhibitor donepezil in childhood brain tumor survivors: a pilot study. Pediatr Blood Cancer 59(3):540–547

    Article  PubMed  PubMed Central  Google Scholar 

  141. Brown PD, Pugh S, Laack NN et al (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 15(10):1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Delanian S, Porcher R, Balla-Mekias S et al (2003) Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol 21(13):2545–2550

    Article  CAS  PubMed  Google Scholar 

  143. Okunieff P, Augustine E, Hicks JE et al (2004) Pentoxifylline in the treatment of radiation-induced fibrosis. J Clin Oncol 22(11):2207–2213

    Article  CAS  PubMed  Google Scholar 

  144. Delanian S, Porcher R, Rudant J et al (2005) Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J Clin Oncol 23(34):8570–8579

    Article  PubMed  Google Scholar 

  145. Gothard L, Cornes P, Brooker S et al (2005) Phase II study of vitamin E and pentoxifylline in patients with late side effects of pelvic radiotherapy. Radiother Oncol 75(3):334–341

    Article  CAS  PubMed  Google Scholar 

  146. Gothard L, Cornes P, Earl J et al (2004) Double-blind placebo-controlled randomised trial of vitamin E and pentoxifylline in patients with chronic arm lymphoedema and fibrosis after surgery and radiotherapy for breast cancer. Radiother Oncol 73(2):133–139

    Article  CAS  PubMed  Google Scholar 

  147. Magnusson M, Hoglund P, Johansson K et al (2009) Pentoxifylline and vitamin E treatment for prevention of radiation-induced side-effects in women with breast cancer: a phase two, double-blind, placebo-controlled randomised clinical trial (Ptx-5). Eur J Cancer 45(14):2488–2495

    Article  CAS  PubMed  Google Scholar 

  148. Delanian S, Chatel C, Porcher R et al (2011) Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): a phase II trial. Int J Radiat Oncol Biol Phys 80(3):832–839

    Article  PubMed  Google Scholar 

  149. Venkitaraman R, Price A, Coffey J et al (2008) Pentoxifylline to treat radiation proctitis: a small and inconclusive randomised trial. Clin Oncol (R Coll Radiol) 20(4):288–292

    Article  CAS  Google Scholar 

  150. Yazbeck VY, Villaruz L, Haley M et al (2013) Management of normal tissue toxicity associated with chemoradiation (primary skin, esophagus, and lung). Cancer J 19(3):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Abratt RP, Morgan GW, Silvestri G et al (2004) Pulmonary complications of radiation therapy. Clin Chest Med 25(1):167–177

    Article  PubMed  Google Scholar 

  152. Monson JM, Stark P, Reilly JJ et al (1998) Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 82(5):842–850

    Article  CAS  PubMed  Google Scholar 

  153. Gonzalez J, Kumar AJ, Conrad CA et al (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67(2):323–326

    Article  CAS  PubMed  Google Scholar 

  154. Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79(5):1487–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang Y, Pan L, Sheng X et al (2012) Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients. Eur J Med Res 17:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tye K, Engelhard HH, Slavin KV et al (2014) An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neurooncol 117(2):321–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute.

Disclosures and Conflicts of Interests

The authors have no conflicts of interests or relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah E. Citrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chung, S.I., Smart, D.K., Chung, E.J., Citrin, D.E. (2017). Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy. In: Tofilon, P., Camphausen, K. (eds) Increasing the Therapeutic Ratio of Radiotherapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-40854-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40854-5_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-40852-1

  • Online ISBN: 978-3-319-40854-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics