Skip to main content

Histone Deacetylase Inhibitors and Tumor Radiosensitization

  • Chapter
  • First Online:
Increasing the Therapeutic Ratio of Radiotherapy

Abstract

Current strategies to increase the radiosensitivity of tumor cells have focused on the molecules and pathways that regulate response to radiation at the cellular level. One group of processes that is generating considerable interest is the modification of DNA histones, with a particular focus on the inhibition of histone acetylation. Histone acetylation is the process by which an acetyl group is covalently affixed to lysine residues within the N-terminus of histone proteins. Acetylation levels are determined by the opposing actions of two families of enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs function to regulate both chromatin structure and gene expression, two factors that are important in determining the response of tumors to radiation. In an attempt to alter the histone acetylation status of cells, considerable efforts at the development of inhibitors of HDAC activity have occurred. The result is the development of a large and structurally diverse number of compounds that are able to inhibit HDAC activity, leading to the hyperacetylation of histones. In preclinical studies, these compounds have been found to enhance the in vitro and in vivo radiosensitivity of a spectrum of human tumor lines. Although the mechanism of HDAC inhibitor-induced radiosensitization has not been fully elucidated, HDAC inhibitors have shown promise in clinical trials when used in combination with chemotherapy and radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence TS, Haffty BG, Harris JR (2014) Milestones in the use of combined-modality radiation therapy and chemotherapy. J Clin Oncol 32(12):1173–1179

    Article  CAS  PubMed  Google Scholar 

  2. McGinn CJ, Shewach DS, Lawrence TS (1996) Radiosensitizing nucleosides. J Natl Cancer Inst 88(17):1193–1203

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  4. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  5. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  CAS  PubMed  Google Scholar 

  6. Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1-2):21–29

    Article  CAS  PubMed  Google Scholar 

  7. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  8. Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279(3):2273–2280

    Article  CAS  PubMed  Google Scholar 

  9. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnstone RW, Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell 4(1):13–18

    Article  CAS  PubMed  Google Scholar 

  11. Almenara J, Rosato R, Grant S (2002) Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 16(7):1331–1343

    Article  CAS  PubMed  Google Scholar 

  12. Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 115(2):287–297

    Article  CAS  PubMed  Google Scholar 

  13. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97(18):10014–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB, Grant S (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 18(50):7016–7025

    Article  CAS  PubMed  Google Scholar 

  15. Boyault C, Sadoul K, Pabion M, Khochbin S (2007) HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26(37):5468–5476

    Article  CAS  PubMed  Google Scholar 

  16. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458

    Article  CAS  PubMed  Google Scholar 

  17. Brown CE, Lechner T, Howe L, Workman JL (2000) The many HATs of transcription coactivators. Trends Biochem Sci 25(1):15–19

    Article  CAS  PubMed  Google Scholar 

  18. Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103(2):263–271

    Article  CAS  PubMed  Google Scholar 

  19. Winston F, Allis CD (1999) The bromodomain: a chromatin-targeting module? Nat Struct Biol 6(7):601–604

    Article  CAS  PubMed  Google Scholar 

  20. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    CAS  PubMed  Google Scholar 

  21. Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9(1):40–48

    Article  CAS  PubMed  Google Scholar 

  22. McKenna NJ, Lanz RB, O'Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20(3):321–344

    CAS  PubMed  Google Scholar 

  23. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377(6548):454–457

    Article  CAS  PubMed  Google Scholar 

  24. Chen JD, Umesono K, Evans RM (1996) SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci U S A 93(15):7567–7571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19(5):286–293

    Article  CAS  PubMed  Google Scholar 

  26. Gong F, Miller KM (2013) Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat Res 750(1-2):23–30

    Article  CAS  PubMed  Google Scholar 

  27. Tamburini BA, Tyler JK (2005) Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25(12):4903–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramanathan B, Smerdon MJ (1986) Changes in nuclear protein acetylation in u.v.-damaged human cells. Carcinogenesis 7(7):1087–1094

    Article  CAS  PubMed  Google Scholar 

  29. Ramanathan B, Smerdon MJ (1989) Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem 264(19):11026–11034

    CAS  PubMed  Google Scholar 

  30. Miller KM, Jackson SP (2012) Histone marks: repairing DNA breaks within the context of chromatin. Biochem Soc Trans 40(2):370–376

    Article  CAS  PubMed  Google Scholar 

  31. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27(20):7028–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamagata K, Kitabayashi I (2009) Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX. Biochem Biophys Res Commun 390(4):1355–1360

    Article  CAS  PubMed  Google Scholar 

  33. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17(9):1144–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  35. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502(7472):489–498

    Article  CAS  PubMed  Google Scholar 

  36. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu J, Wang H, Ma F, Xu D, Chang Y, Zhang J, Wang J, Zhao M, Lin C, Huang C, Qian H, Zhan Q (2015) MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol Oncol 9(1):218–235

    Article  CAS  PubMed  Google Scholar 

  38. Efimova EV, Takahashi S, Shamsi NA, Wu D, Labay E, Ulanovskaya OA, Weichselbaum RR, Kozmin SA, Kron SJ (2016) Linking Cancer Metabolism to DNA Repair and Accelerated Senescence. Mol Cancer Res 14(2):173–184

    Article  CAS  PubMed  Google Scholar 

  39. Aghaee F, Pirayesh Islamian J, Baradaran B (2012) Enhanced radiosensitivity and chemosensitivity of breast cancer cells by 2-deoxy-d-glucose in combination therapy. J Breast Cancer 15(2):141–147

    Article  PubMed  PubMed Central  Google Scholar 

  40. Suh DH, Kim MK, No JH, Chung HH, Song YS (2011) Metabolic approaches to overcoming chemoresistance in ovarian cancer. Ann N Y Acad Sci 1229:53–60

    Article  CAS  PubMed  Google Scholar 

  41. Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krusche CA, Wulfing P, Kersting C, Vloet A, Bocker W, Kiesel L, Beier HM, Alfer J (2005) Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat 90(1):15–23

    Article  CAS  PubMed  Google Scholar 

  43. Minamiya Y, Ono T, Saito H, Takahashi N, Ito M, Mitsui M, Motoyama S, Ogawa J (2011) Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer 74(2):300–304

    Article  PubMed  Google Scholar 

  44. Rikimaru T, Taketomi A, Yamashita Y, Shirabe K, Hamatsu T, Shimada M, Maehara Y (2007) Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology 72(1-2):69–74

    Article  CAS  PubMed  Google Scholar 

  45. Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, Fritzsche FR, Niesporek S, Denkert C, Dietel M, Kristiansen G (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98(3):604–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshida M, Furumai R, Nishiyama M, Komatsu Y, Nishino N, Horinouchi S (2001) Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol 48(Suppl 1):S20–S26

    Article  CAS  PubMed  Google Scholar 

  48. Remiszewski SW (2002) Recent advances in the discovery of small molecule histone deacetylase inhibitors. Curr Opin Drug Discov Devel 5(4):487–499

    CAS  PubMed  Google Scholar 

  49. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96(8):4592–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cerna D, Camphausen K, Tofilon PJ (2006) Histone deacetylation as a target for radiosensitization. Curr Topics Dev Biol 73:173–204

    Google Scholar 

  51. Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, Marks PA, Richon VM, La Quaglia MP (2001) The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res 61(9):3591–3594

    CAS  PubMed  Google Scholar 

  52. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100(8):4389–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  CAS  PubMed  Google Scholar 

  54. Marks PA (2010) Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 1799(10-12):717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ (2008) A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22(5):1026–1034

    Article  CAS  PubMed  Google Scholar 

  56. Mahboobi S, Dove S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T (2009) Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rbeta, and histone deacetylases. J Med Chem 52(8):2265–2279

    Article  CAS  PubMed  Google Scholar 

  57. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M, Zifcak B, Ma AW, DellaRocca S, Borek M, Zhai HX, Cai X, Voi M (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res 18(15):4104–4113

    Article  CAS  PubMed  Google Scholar 

  58. Schlaff CD, Arscott WT, Gordon I, Camphausen KA, Tandle A (2015) Human EGFR-2, EGFR and HDAC triple- inhibitor CUDC-101 enhances radiosensitivity of GBM cells. Biomed Res J 2(1):105–119

    Google Scholar 

  59. Delcuve GP, Khan DH, Davie JR (2013) Targeting class I histone deacetylases in cancer therapy. Expert Opin Ther Targets 17(1):29–41

    Article  CAS  PubMed  Google Scholar 

  60. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arundel CM, Glicksman AS, Leith JT (1985) Enhancement of radiation injury in human colon tumor cells by the maturational agent sodium butyrate (NaB). Radiat Res 104(3):443–448

    Article  CAS  PubMed  Google Scholar 

  62. Kruh J (1982) Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 42(2):65–82

    CAS  PubMed  Google Scholar 

  63. Miller AA, Kurschel E, Osieka R, Schmidt CG (1987) Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 23(9):1283–1287

    Article  CAS  PubMed  Google Scholar 

  64. Novogrodsky A, Dvir A, Ravid A, Shkolnik T, Stenzel KH, Rubin AL, Zaizov R (1983) Effect of polar organic compounds on leukemic cells. Butyrate-induced partial remission of acute myelogenous leukemia in a child. Cancer 51(1):9–14

    Article  CAS  PubMed  Google Scholar 

  65. Perrine SP, Ginder GD, Faller DV, Dover GH, Ikuta T, Witkowska HE, Cai SP, Vichinsky EP, Olivieri NF (1993) A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med 328(2):81–86

    Article  CAS  PubMed  Google Scholar 

  66. Biade S, Stobbe CC, Boyd JT, Chapman JD (2001) Chemical agents that promote chromatin compaction radiosensitize tumour cells. Int J Radiat Biol 77(10):1033–1042

    Article  CAS  PubMed  Google Scholar 

  67. Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, Fojo T, Bates SE (2002) Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 1(11):937–941

    CAS  PubMed  Google Scholar 

  68. Camphausen K, Scott T, Sproull M, Tofilon PJ (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10(18 Pt 1):6066–6071

    Article  CAS  PubMed  Google Scholar 

  69. Vidali G, Boffa LC, Mann RS, Allfrey VG (1978) Reversible effects of Na-butyrate on histone acetylation. Biochem Biophys Res Commun 82(1):223–227

    Article  CAS  PubMed  Google Scholar 

  70. Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) Pharmacodynamic properties of N-dipropylacetic acid. Therapie 18:435–438

    CAS  PubMed  Google Scholar 

  71. Perucca E (2002) Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16(10):695–714

    Article  CAS  PubMed  Google Scholar 

  72. Pinder RM, Brogden RN, Speight TM, Avery GS (1977) Sodium valproate: a review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs 13(2):81–123

    Article  CAS  PubMed  Google Scholar 

  73. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276(39):36734–36741

    Article  CAS  PubMed  Google Scholar 

  75. Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114(3):380–386

    Article  CAS  PubMed  Google Scholar 

  76. Karagiannis TC, Kn H, El-Osta A (2006) The epigenetic modifier, valproic acid, enhances radiation sensitivity. Epigenetics 1(3):131–137

    Article  PubMed  Google Scholar 

  77. Shoji M, Ninomiya I, Makino I, Kinoshita J, Nakamura K, Oyama K, Nakagawara H, Fujita H, Tajima H, Takamura H, Kitagawa H, Fushida S, Harada S, Fujimura T, Ohta T (2012) Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in esophageal squamous cell carcinoma. Int J Oncol 40(6):2140–2146

    CAS  PubMed  Google Scholar 

  78. Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang S-M, Harari PM (2005) Modulation of radiation response by histone deacetylase inhibition. Int J Radiation Oncol Biol Phys 62(1):223–229

    Article  CAS  Google Scholar 

  79. Zhang Y, Adachi M, Zhao X, Kawamura R, Imai K (2004) Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino- methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer 110(2):301–308

    Article  CAS  PubMed  Google Scholar 

  80. Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M (2007) Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type P53 function to ionizing radiation. Int J Radiation Oncol Biol Phys 69(1):214–220

    Article  CAS  Google Scholar 

  81. Lu YS, Chou CH, Tzen KY, Gao M, Cheng AL, Kulp SK, Cheng JC (2012) Radiosensitizing effect of a phenylbutyrate-derived histone deacetylase inhibitor in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 83(2):e181–e189

    Article  CAS  PubMed  Google Scholar 

  82. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE (2005) Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11(13):4912–4922

    Article  CAS  PubMed  Google Scholar 

  83. Banuelos CA, Banath JP, MacPhail SH, Zhao J, Reitsema T, Olive PL (2007) Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res 13(22 Pt 1):6816–6826

    Article  CAS  PubMed  Google Scholar 

  84. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K (2007) Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer 121(5):1138–1148

    Article  CAS  PubMed  Google Scholar 

  85. Kim IA, No M, Lee JM, Shin JH, Oh JS, Choi EJ, Kim IH, Atadja P, Bernhard EJ (2009) Epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: potential role of histone deacetylase 6. Radiother Oncol 92(1):125–132

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Jung M, Dritschilo A, Jung M (2004) Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res 161(6):667–674

    Article  CAS  PubMed  Google Scholar 

  87. Geng L, Cuneo KC, Fu A, Tu T, Atadja PW, Hallahan DE (2006) Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res 66(23):11298–11304

    Article  CAS  PubMed  Google Scholar 

  88. Folkvord, S., A. H. Ree, T. Furre, T. Halvorsen and K. Flatmark (2009). “Radiosensitization by SAHA in Experimental Colorectal Carcinoma Models—In Vivo Effects and Relevance of Histone Acetylation Status.” International Journal of Radiation Oncology*Biology*Physics 74(2):546–552

    Google Scholar 

  89. Marks, P. A. (2004). “The mechanism of the anti-tumor activity of the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA).” Cell Cycle 3(5):534–535

    Google Scholar 

  90. Kim, J. H., J. H. Shin and I. H. Kim (2004). “Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor.” International Journal of Radiation Oncology*Biology*Physics 59(4):1174–1180

    Google Scholar 

  91. Chavez-Blanco, A., B. Segura-Pacheco, E. Perez-Cardenas, L. Taja-Chayeb, L. Cetina, M. Candelaria, D. Cantu, A. Gonzalez-Fierro, P. Garcia-Lopez, P. Zambrano, C. Perez-Plasencia, G. Cabrera, C. Trejo-Becerril, E. Angeles and A. Duenas-Gonzalez (2005). “Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study.” Mol Cancer 4(1):22

    Google Scholar 

  92. Chateauvieux, S., F. Morceau, M. Dicato and M. Diederich (2010). “Molecular and therapeutic potential and toxicity of valproic acid.” J Biomed Biotechnol 2010

    Google Scholar 

  93. Jose, B., Y. Oniki, T. Kato, N. Nishino, Y. Sumida and M. Yoshida (2004). “Novel histone deacetylase inhibitors: cyclic tetrapeptide with trifluoromethyl and pentafluoroethyl ketones.” Bioorg Med Chem Lett 14(21):5343–5346

    Google Scholar 

  94. Bauden, M., H. Tassidis and D. Ansari (2015). “In vitro cytotoxicity evaluation of HDAC inhibitor Apicidin in pancreatic carcinoma cells subsequent time and dose dependent treatment.” Toxicol Lett 236(1):8–15

    Google Scholar 

  95. Adimoolam, S., M. Sirisawad, J. Chen, P. Thiemann, J. M. Ford and J. J. Buggy (2007). “HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination.” Proc Natl Acad Sci U S A 104(49):19482–19487

    Google Scholar 

  96. Xiao, W., P. H. Graham, J. Hao, L. Chang, J. Ni, C. A. Power, Q. Dong, J. H. Kearsley and Y. Li (2013). “Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells.” PLoS One 8(8):e74253

    Google Scholar 

  97. Sholler, G. S., E. A. Currier, A. Dutta, M. A. Slavik, S. A. Illenye, M. C. Mendonca, J. Dragon, S. S. Roberts and J. P. Bond (2013). “PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen speciesdependent apoptosis and is synergistic with bortezomib in neuroblastoma.” J Cancer Ther Res 2:21

    Google Scholar 

  98. Fouliard, S., R. Robert, A. Jacquet-Bescond, Q. C. du Rieu, S. Balasubramanian, D. Loury, Y. Loriot, A. Hollebecque, I. Kloos, J. C. Soria, M. Chenel and S. Depil (2013). “Pharmacokinetic/pharmacodynamic modellingbased optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I.” Eur J Cancer 49(13):2791–2797

    Google Scholar 

  99. Wagner, J. M., B. Hackanson, M. Lubbert and M. Jung (2010). “Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy.” Clin Epigenetics 1(3-4):117–136

    Google Scholar 

  100. Plumb, J. A., P. W. Finn, R. J. Williams, M. J. Bandara, M. R. Romero, C. J. Watkins, N. B. La Thangue and R. Brown (2003). “Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101.” Mol Cancer Ther 2(8):721–728

    Google Scholar 

  101. Dejligbjerg, M., M. Grauslund, I. J. Christensen, J. Tjornelund, P. Buhl Jensen and M. Sehested (2008). “Identification of predictive biomarkers for the histone deacetylase inhibitor belinostat in a panel of human cancer cell lines.” Cancer Biomark 4(2):101–109

    Google Scholar 

  102. Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46(24):5097–5116

    Article  CAS  PubMed  Google Scholar 

  103. Chung YL, Wang AJ, Yao LF (2004) Antitumor histone deacetylase inhibitors suppress cutaneous radiation syndrome: Implications for increasing therapeutic gain in cancer radiotherapy. Mol Cancer Ther 3(3):317–325

    Article  CAS  PubMed  Google Scholar 

  104. Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184(1):1–16

    Article  CAS  PubMed  Google Scholar 

  105. Atadja P, Gao L, Kwon P, Trogani N, Walker H, Hsu M, Yeleswarapu L, Chandramouli N, Perez L, Versace R, Wu A, Sambucetti L, Lassota P, Cohen D, Bair K, Wood A, Remiszewski S (2004) Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 64(2):689–695

    Article  CAS  PubMed  Google Scholar 

  106. Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W, Klang M, Schwartz L, Richardson S, Rosa E, Drobnjak M, Cordon-Cordo C, Chiao JH, Rifkind R, Marks PA, Scher H (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9(10 Pt 1):3578–3588

    CAS  PubMed  Google Scholar 

  107. Patnaik A, Rowinsky EK, Villalona MA, Hammond LA, Britten CD, Siu LL, Goetz A, Felton SA, Burton S, Valone FH, Eckhardt SG (2002) A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin Cancer Res 8(7):2142–2148

    CAS  PubMed  Google Scholar 

  108. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63(21):7291–7300

    CAS  PubMed  Google Scholar 

  109. Oike T, Ogiwara H, Torikai K, Nakano T, Yokota J, Kohno T (2012) Garcinol, a histone acetyltransferase inhibitor, radiosensitizes cancer cells by inhibiting non-homologous end joining. Int J Radiat Oncol Biol Phys 84(3):815–821

    Article  CAS  PubMed  Google Scholar 

  110. Chung YL, Lee MY, Pui NN (2009) Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis 30(8):1387–1397

    Article  CAS  PubMed  Google Scholar 

  111. Stoilov L, Darroudi F, Meschini R, van der Schans G, Mullenders LH, Natarajan AT (2000) Inhibition of repair of X-ray-induced DNA double-strand breaks in human lymphocytes exposed to sodium butyrate. Int J Radiat Biol 76(11):1485–1491

    Article  CAS  PubMed  Google Scholar 

  112. Purrucker JC, Fricke A, Ong MF, Rube C, Rube CE, Mahlknecht U (2010) HDAC inhibition radiosensitizes human normal tissue cells and reduces DNA Double-Strand Break repair capacity. Oncol Rep 23(1):263–269

    CAS  PubMed  Google Scholar 

  113. Krauze AV, Myrehaug SD, Chang MG, Holdford DJ, Smith S, Shih J, Tofilon PJ, Fine HA, Camphausen K (2015) A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. Int J Radiat Oncol Biol Phys 92(5):986–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Barker CA, Bishop AJ, Chang M, Beal K, Chan TA (2013) Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 86(3):504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, Belanger K, Brandes AA, Bogdahn U, Macdonald DR, Forsyth P, Rossetti AO, Lacombe D, Mirimanoff RO, Vecht CJ, Stupp R (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77(12):1156–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Camphausen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spehalski, E.I., Tofilon, P.J., Camphausen, K. (2017). Histone Deacetylase Inhibitors and Tumor Radiosensitization. In: Tofilon, P., Camphausen, K. (eds) Increasing the Therapeutic Ratio of Radiotherapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-40854-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40854-5_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-40852-1

  • Online ISBN: 978-3-319-40854-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics