Skip to main content

Auditory Processing Disorder: Biological Basis and Treatment Efficacy

  • Chapter
  • First Online:
Translational Research in Audiology, Neurotology, and the Hearing Sciences

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 58))

Abstract

Auditory processing disorders contribute to communication difficulties in children with language-based learning impairments and in older adults who have trouble hearing in background noise. Therefore, deficits in auditory processing are widespread among these diverse populations. For this reason, it behooves both scientific and clinical communities to consider optimum techniques for assessing and managing these deficits. The auditory brainstem response to complex sounds (cABR) provides an objective index of the biological health of the central auditory system. The cABR is also a sensitive indicator of training-induced neuroplastic changes and can therefore be used to assess treatment efficacy. Once integrated into clinical practice, use of the cABR may facilitate more widespread evaluation and treatment of auditory processing disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, S., Skoe, E., Chandrasekaran, B., & Kraus, N. (2010a). Neural timing is linked to speech perception in noise. The Journal of Neuroscience, 30(14), 4922–4926.

    Google Scholar 

  • Anderson, S., Skoe, E., Chandrasekaran, B., Zecker, S., & Kraus, N. (2010b). Brainstem correlates of speech-in-noise perception in children. Hearing Research, 270(1–2), 151–157.

    Google Scholar 

  • Anderson, S., Parbery-Clark, A., Yi, H.-G., & Kraus, N. (2011). A neural basis of speech-in-noise perception in older adults. Ear and Hearing, 32(6), 750–757.

    Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. The Journal of Neuroscience, 32(41), 14156–14164.

    Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., Drehobl, S., & Kraus, N. (2013a). Effects of hearing loss on the subcortical representation of speech cues. The Journal of the Acoustical Society of America, 133(5), 3030.

    Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2013b). Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance. Journal of Speech, Language, and Hearing Research, 56(1), 31–43.

    Google Scholar 

  • Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013c). A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hearing Research, 300, 18–32.

    Google Scholar 

  • Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013d). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences of the USA, 110(11), 4357–4362.

    Google Scholar 

  • Anderson, S., White-Schwoch, T., Choi, H. J., & Kraus, N. (2014). Partial maintenance of auditory-based cognitive training benefits in older adults. Neuropsychologia, 62, 286–296.

    Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2015). Development of subcortical speech representation in human infants. The Journal of the Acoustical Society of America, 137(6), 3346–3355.

    Google Scholar 

  • Anguera, J., Boccanfuso, J., Rintoul, J., Al-Hashimi, O., Faraji, F., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101.

    Google Scholar 

  • ANSI. (2002). Acoustical performance criteria, design requirements and guidelines for schools. In ANSI S12.60, American National Standards Institute.

    Google Scholar 

  • Bajo, V. M., & King, A. J. (2012). Cortical modulation of auditory processing in the midbrain. Frontiers in Neural Circuits, 6(114), 1–12.

    Google Scholar 

  • Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13(2), 253–260.

    Google Scholar 

  • Balen, S. A., Bretzke, L., Mottecy, C. M., Liebel, G., Boeno, M. R. M., & Gondim, L. M. A. (2009). Temporal resolution in children: Comparing normal hearing, conductive hearing loss and auditory processing disorder. Revista Brasileira de Otorrinolaringologia, 75(1), 123–129.

    Google Scholar 

  • Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19(11), 2699–2707.

    Google Scholar 

  • Basu, M., Krishnan, A., & Weber-Fox, C. (2010). Brainstem correlates of temporal auditory processing in children with specific language impairment. Developmental Science, 13(1), 77–91.

    Google Scholar 

  • Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35(1), 391–416.

    Google Scholar 

  • Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., & Shinn-Cunningham, B. G. (2014). Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in Systems Neuroscience, 8(26), 1–18.

    Google Scholar 

  • Billiet, C. R., & Bellis, T. J. (2010). The relationship between brainstem temporal processing and performance on tests of central auditory function in children with reading disorders. Journal of Speech, Language, and Hearing Research, 54(1), 228–242.

    Google Scholar 

  • Bradlow, A. R., Kraus, N., & Hayes, E. (2003). Speaking clearly for children with learning disabilities: Sentence perception in noise. Journal of Speech, Language, and Hearing Research, 46(1), 80–97.

    Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis Cambridge, MA: MIT Press.

    Google Scholar 

  • Burkard, R. F., & Sims, D. (2002). A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults. American Journal of Audiology, 11(1), 13–22.

    Google Scholar 

  • Cacace, A. T., & McFarland, D. J. (1998). Central auditory processing disorder in school-aged children: A critical review. Journal of Speech, Language, and Hearing Research, 41(2), 355–373.

    Google Scholar 

  • Cardon, G., & Sharma, A. (2013). Central auditory maturation and behavioral outcome in children with auditory neuropathy spectrum disorder who use cochlear implants. International Journal of Audiology, 52(9), 577–586.

    Google Scholar 

  • Caspary, D. M., Ling, L., Turner, J. G., & Hughes, L. F. (2008). Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. Journal of Experimental Biology, 211(11), 1781–1791.

    Google Scholar 

  • Caspary, D. M., Hughes, L. F., & Ling, L. L. (2013). Age-related GABAA receptor changes in rat auditory cortex. Neurobiology of Aging, 34(5), 1486–1496.

    Google Scholar 

  • Centanni, T. M., Booker, A. B., Sloan, A. M., Chen, F., Maher, B. J., et al. (2014). Knockdown of the dyslexia-associated gene kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex, 24(7), 1753–1766.

    Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236–246.

    Google Scholar 

  • Clinard, C., & Tremblay, K. (2013). Aging degrades the neural encoding of simple and complex sounds. Journal of the American Academy of Audiology, 24(7), 590–599.

    Google Scholar 

  • de Villers-Sidani, E., Alzghoul, L., Zhou, X., Simpson, K. L., Lin, R. C. S., & Merzenich, M. M. (2010). Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proceedings of the National Academy of Sciences of the USA, 107(31), 13900–13905.

    Google Scholar 

  • Dias, K. Z., Jutras, B., Acrani, I. O., & Pereira, L. D. (2012). Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age. International Journal of Pediatric Otorhinolaryngology, 76(2), 174–178.

    Google Scholar 

  • Don, M., Allen, A., & Starr, A. (1976). Effect of click rate on the latency of auditory brain stem responses in humans. The Annals of Otology, Rhinology, and Laryngology, 86(2 Pt 1), 186–195.

    Google Scholar 

  • Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51(2), 111–123.

    Google Scholar 

  • Fey, M. E., Richard, G. J., Geffner, D., Kamhi, A. G., Medwetsky, L., et al. (2011). Auditory processing disorder and auditory/language interventions: An evidence-based systematic review. Language, Speech, and Hearing Services in Schools, 42(3), 246–264.

    Google Scholar 

  • Filippini, R., & Schochat, E. (2009). Brainstem evoked auditory potentials with speech stimulus in the auditory processing disorder. Brazilian Journal of Otorhinolaryngology, 75(3), 449–455.

    Google Scholar 

  • Filippini, R., Befi-Lopes, D. M., & Schochat, E. (2012). Efficacy of auditory training using the auditory brainstem response to complex sounds: Auditory processing disorder and specific language impairment. Folia Phoniatrica et Logopaedica, 64(5), 217–226.

    Google Scholar 

  • Fitzgibbons, P. J., & Gordon‐Salant, S. (1995). Age effects on duration discrimination with simple and complex stimuli. The Journal of the Acoustical Society of America, 98(6), 3140–3145.

    Google Scholar 

  • Fitzgibbons, P. J., Gordon-Salant, S., & Friedman, S. A. (2006). Effects of age and sequence presentation rate on temporal order recognition. The Journal of the Acoustical Society of America, 120(2), 991–999.

    Google Scholar 

  • Fogerty, D., Humes, L. E., & Kewley-Port, D. (2010). Auditory temporal-order processing of vowel sequences by young and elderly listeners. The Journal of the Acoustical Society of America, 127(4), 2509–2520.

    Google Scholar 

  • Galbraith, G. C., Arbagey, P. W., Branski, R., Comerci, N., & Rector, P. M. (1995). Intelligible speech encoded in the human brain stem frequency-following response. NeuroReport, 6(17), 2363–2367.

    Google Scholar 

  • Gao, E., & Suga, N. (2000). Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proceedings of the National Academy of Sciences of the USA, 97(14), 8081–8086.

    Google Scholar 

  • Garcia-Lazaro, J. A., Belliveau, L. A., & Lesica, N. A. (2013). Independent population coding of speech with sub-millisecond precision. The Journal of Neuroscience, 33(49), 19362–19372.

    Google Scholar 

  • Gardi, J., & Merzenich, M. (1979). The effect of high‐pass noise on the scalp‐recorded frequency following response (FFR) in humans and cats. The Journal of the Acoustical Society of America, 65(6), 1491–1500.

    Google Scholar 

  • Gardi, J., Salamy, A., & Mendelson, T. (1979). Scalp-recorded frequency-following responses in neonates. International Journal of Audiology, 18(6), 494–506.

    Google Scholar 

  • Gerry, D., Unrau, A., & Trainor, L. J. (2012). Active music classes in infancy enhance musical, communicative and social development. Developmental Science, 15(3), 398–407.

    Google Scholar 

  • Ghannoum, M. T., Shalaby, A. A., Dabbous, A. O., Abd-El-Raouf, E. R., & Abd-El-Hady, H. S. (2014). Speech evoked auditory brainstem response in learning disabled children. Hearing, Balance and Communication, 12(3), 126–142.

    Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1993). Temporal factors and speech recognition performance in young and elderly listeners. Journal of Speech and Hearing Research, 36(6), 1276–1285.

    Google Scholar 

  • Gordon-Salant, S., Yeni-Komshian, G. H., Fitzgibbons, P. J., & Barrett, J. (2006). Age-related differences in identification and discrimination of temporal cues in speech segments. The Journal of the Acoustical Society of America, 119(4), 2455–2466.

    Google Scholar 

  • Gordon-Salant, S., Fitzgibbons, P. J., & Friedman, S. A. (2007). Recognition of time-compressed and natural speech with selective temporal enhancements by young and elderly listeners. Journal of Speech, Language, and Hearing Research, 50(5), 1181–1193.

    Google Scholar 

  • Gordon-Salant, S., Yeni-Komshian, G., & Fitzgibbons, P. (2008). The role of temporal cues in word identification by younger and older adults: Effects of sentence context. The Journal of the Acoustical Society of America, 124(5), 3249–3260.

    Google Scholar 

  • Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., et al. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences of the USA, 99(16), 10911–10916.

    Google Scholar 

  • Greenberg, S. (1980). Neural temporal coding of pitch and vowel quality: Human frequency-following response studies of complex signals. Los Angeles: Phonetics Laboratory, Department of Linguistics, UCLA.

    Google Scholar 

  • Greenberg, S., Marsh, J. T., Brown, W. S., & Smith, J. C. (1987). Neural temporal coding of low pitch. I. Human frequency-following responses to complex tones. Hearing Research, 25(2–3), 91–114.

    Google Scholar 

  • Grose, J. H., Hall III, J. W., & Buss, E. (2006). Temporal processing deficits in the pre-senescent auditory system. The Journal of the Acoustical Society of America, 119(4), 2305.

    Google Scholar 

  • Hall, J. (1979). Auditory brainstem frequency following responses to waveform envelope periodicity. Science, 205(4412), 1297–1299.

    Google Scholar 

  • The Harmony Project. (2013). http://www.harmony-project.org/.

  • Harris, K. C., Wilson, S., Eckert, M. A., & Dubno, J. R. (2012). Human evoked cortical activity to silent gaps in noise: Effects of age, attention, and cortical processing speed. Ear and Hearing, 33(3), 330.

    Google Scholar 

  • Henshaw, H., & Ferguson, M. A. (2013). Efficacy of individual computer-based auditory training for people with hearing loss: A systematic review of the evidence. PloS ONE, 8(5), e62836.

    Google Scholar 

  • Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33(8), 3500–3504.

    Google Scholar 

  • Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proceedings of the National Academy of Sciences of the USA, 106(31), 13022–13027.

    Google Scholar 

  • Hornickel, J., Knowles, E., & Kraus, N. (2012a). Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hearing Research, 284(1–2), 52–58.

    Google Scholar 

  • Hornickel, J., Zecker, S. G., Bradlow, A. R., & Kraus, N. (2012b). Assistive listening devices drive neuroplasticity in children with dyslexia. Proceedings of the National Academy of Sciences of the USA, 109(41), 16731–16736.

    Google Scholar 

  • Hughes, L. F., Turner, J. G., Parrish, J. L., & Caspary, D. M. (2010). Processing of broadband stimuli across A1 layers in young and aged rats. Hearing Research, 264(1–2), 79–85.

    Google Scholar 

  • Humes, L. E., Dubno, J. R., Gordon-Salant, S., Lister, J. J., Cacace, A. T., et al. (2012). Central presbycusis: A review and evaluation of the evidence. Journal of the American Academy of Audiology, 23(8), 635–666.

    Google Scholar 

  • Jafari, Z., Malayeri, S., & Rostami, R. (2014). Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder. Clinical Neurophysiology, 126(2), 325–332.

    Google Scholar 

  • Jeng, F. C., Schnabel, E. A., Dickman, B. M., Jiong, H. U., Ximing, L. I., et al. (2010). Early maturation of frequency-following responses to voice pitch in infants with normal hearing. Perceptual & Motor Skills, 111(3), 765–784.

    Google Scholar 

  • Johnson, K. L., Nicol, T. G., & Kraus, N. (2005). Brain stem response to speech: A biological marker of auditory processing. Ear and Hearing, 26(5), 424–434.

    Google Scholar 

  • Keith, R. W., Katbamna, B., Tawfik, S., & Smolak, L. H. (1987). The effect of linguistic background on staggered spondaic word and dichotic consonant vowel scores. British Journal of Audiology, 21(1), 21–26.

    Google Scholar 

  • King, C., Warrier, C. M., Hayes, E., & Kraus, N. (2002). Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neuroscience Letters, 319(2), 111–115.

    Google Scholar 

  • Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L. (2002). Background noise levels and reverberation times in unoccupied classrooms: Predictions and measurements. American Journal of Audiology, 11(2), 65.

    Google Scholar 

  • Kraus, N., & Nicol, T. (2014). The cognitive auditory system: The role of learning in shaping the biology of the auditory system. In A. N. Popper & R. R. Fay (Eds.), Perspectives on auditory research (pp. 299–319). New York: Springer Science+Business Media.

    Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015) Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654.

    Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2016). Neurobiology of everyday communication: What have we learned from music? The Neuroscientist, doi:10.1177/1073858416653593.

    Google Scholar 

  • Kraus, N., Özdamar, Ö., Stein, L., & Reed, N. (1984). Absent auditory brain stem response: Peripheral hearing loss or brain stem dysfunction? The Laryngoscope, 94(3), 400–406.

    Google Scholar 

  • Kraus, N., McGee, T. J., Carrell, T. D., Zecker, S. G., Nicol, T. G., & Koch, D. B. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science, 273(5277), 971–973.

    Google Scholar 

  • Kraus, N., Bradlow, M. A., Cunningham, C. J., King, C. D., Koch, D. B., et al. (2000). Consequences of neural asynchrony: A case of AN. Journal of the Assocation for Research in Otolaryngology, 1(1), 33–45.

    Google Scholar 

  • Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., Strait, D. L., et al. (2014). Music enrichment programs improve the neural encoding of speech in at-risk children. The Journal of Neuroscience, 34(36), 11913–11918.

    Google Scholar 

  • Kraus, N., Anderson, S., White-Schwoch, T., Fay, R. R., and Popper, A. N. (in press). The Frequency-following response: A window into human communication. Springer Nature, New York.

    Google Scholar 

  • Krishnan, A., Gandour, J. T., & Bidelman, G. M. (2010). The effects of tone language experience on pitch processing in the brainstem. Journal of Neurolinguistics, 23(1), 81–95.

    Google Scholar 

  • Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the USA, 109(20), 7877–7881.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. The Journal of Neuroscience, 26(7), 2115–2123.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085.

    Google Scholar 

  • Kumar, U. (2011). Temporal processing abilities across different age groups. Journal of the American Academy of Audiology, 22(1), 5–12.

    Google Scholar 

  • Lister, J. J., Maxfield, N. D., Pitt, G. J., & Gonzalez, V. B. (2011). Auditory evoked response to gaps in noise: Older adults. International Journal of Audiology, 50(4), 211–225.

    Google Scholar 

  • Malayeri, S., Lotfi, Y., Moossavi, S. A., Rostami, R., & Faghihzadeh, S. (2014). Brainstem response to speech and non-speech stimuli in children with learning problems. Hearing Research, 313, 75–82.

    Google Scholar 

  • Marsh, J. T., & Worden, F. G. (1968). Sound evoked frequency‐following responses in the central auditory pathway. The Laryngoscope, 78(7), 1149–1163.

    Google Scholar 

  • Meddis, R., & O’Mard, L. (1997). A unitary model of pitch perception. The Journal of the Acoustical Society of America, 102(3), 1811–1820.

    Google Scholar 

  • Medwetsky, L. (2011). Spoken language processing model: Bridging auditory and language processing to guide assessment and intervention. Language, Speech, and Hearing Services in Schools, 42(3), 286–296.

    Google Scholar 

  • Miller, C. A., & Wagstaff, D. A. (2011). Behavioral profiles associated with auditory processing disorder and specific language impairment. Journal of Communication Disorders, 44(6), 745–763.

    Google Scholar 

  • Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusions among some English consonants. The Journal of the Acoustical Society of America, 27(2), 338–352.

    Google Scholar 

  • Moore, D. R., Ferguson, M. A., Edmondson-Jones, A. M., Ratib, S., & Riley, A. (2010). Nature of auditory processing disorder in children. Pediatrics, 126(2), e382–390.

    Google Scholar 

  • Moushegian, G., Rupert, A. L., & Stillman, R. D. (1973). Scalp-recorded early responses in man to frequencies in the speech range. Electroencephalography and Clinical Neurophysiology, 35(6), 665–667.

    Google Scholar 

  • Musiek, F. E. (1983). Assessment of central auditory dysfunction: The dichotic digit test revisited. Ear and Hearing, 4(2), 79–83.

    Google Scholar 

  • Musiek, F. E. (1994). Frequency (pitch) and duration pattern tests. Journal of the American Academy of Audiology, 5(4), 265–268.

    Google Scholar 

  • Musiek, F. E., Pinheiro, M. L., & Wilson, D. H. (1980). Auditory pattern perception in‘split brain’patients. Archives of Otolaryngology, 106(10), 610–612.

    Google Scholar 

  • Musiek, F.E., Gollegly, K., Kibbe, K., & Verkest-Lenz, S. (1991). Proposed screening test for central auditory disorders: Follow-up on the Dichotic Digits Test. American Journal of Otology, 12(2), 109–113.

    Google Scholar 

  • Myklebust, H. (1954). Auditory disorders in children. New York: Grune & Stratton.

    Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–778.

    Google Scholar 

  • Oxenham, A. J. (2008). Pitch perception and auditory stream segregation: Implications for hearing loss and cochlear implants. Trends in Amplification, 12(4), 316–331.

    Google Scholar 

  • Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5), e18082.

    Google Scholar 

  • Parbery-Clark, A., Anderson, S., Hittner, E., & Kraus, N. (2012). Musical experience offsets age-related delays in neural timing. Neurobiology of Aging, 33(7), 1483.e1–4.

    Google Scholar 

  • Phillips, S. L., Gordon-Salant, S., Fitzgibbons, P. J., & Yeni-Komshian, G. (2000). Frequency and temporal resolution in elderly listeners with good and poor word recognition. Journal of Speech, Language, and Hearing Research, 43(1), 217–228.

    Google Scholar 

  • Rocha-Muniz, C. N., Befi-Lopes, D. M., & Schochat, E. (2012). Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hearing Research, 294(1), 143–152.

    Google Scholar 

  • Roland, P., Henion, K., Booth, T., Campbell, J. D., & Sharma, A. (2012). Assessment of cochlear implant candidacy in patients with cochlear nerve deficiency using the P1 CAEP biomarker. Cochlear Implants International, 13(1), 16–25.

    Google Scholar 

  • Russo, N., Nicol, T., Zecker, S., Hayes, E., & Kraus, N. (2005). Auditory training improves neural timing in the human brainstem. Behavioral Brain Research, 156(1), 95–103.

    Google Scholar 

  • Russo, N., Skoe, E., Trommer, B., Nicol, T., Zecker, S., et al. (2008). Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clinical Neurophysiology, 119(8), 1720–1731.

    Google Scholar 

  • Russo, N., Nicol, T., Trommer, B., Zecker, S., & Kraus, N. (2009). Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Developmental Science, 12(4), 557–567.

    Google Scholar 

  • Schaette, R., Gollisch, T., & Herz, A. V. (2005). Spike-train variability of auditory neurons in vivo: Dynamic responses follow predictions from constant stimuli. Journal of Neurophysiology, 93(6), 3270–3281.

    Google Scholar 

  • Schatteman, T. A., Hughes, L. F., & Caspary, D. M. (2008). Aged-related loss of temporal processing: Altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience, 154(1), 329–337.

    Google Scholar 

  • Schneider, B. A., & Hamstra, S. J. (1999). Gap detection thresholds as a function of tonal duration for older and younger adults. The Journal of the Acoustical Society of America, 106(1), 371–380.

    Google Scholar 

  • Schochat, E., Musiek, F. E., Alonso, R., & Ogata, J. (2010). Effect of auditory training on the middle latency response in children with (central) auditory processing disorder. Brazilian Journal of Medical and Biological Research, 43(8), 777–785.

    Google Scholar 

  • Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. The Journal of Neuroscience, 33(34), 13686–13694.

    Google Scholar 

  • Shaheen L. A., Valero, M. D., & Liberman, M. C. (2015). Towards a diagnosis of cochlear neuropathy with envelope-following responses. Journal of the Association for Research in Otolaryngology, 16, 727–745.

    Google Scholar 

  • Sharma, M., Purdy, S., Newall, P., Wheldall, K., Beaman, R., & Dillon, H. (2006). Electrophysiological and behavioral evidence of auditory processing deficits in children with reading disorder. Clinical Neurophysiology, 117(5), 1130–1144.

    Google Scholar 

  • Sharma, M., Purdy, S. C., & Kelly, A. S. (2009). Comorbidity of auditory processing, language, and reading disorders. Journal of Speech, Language, and Hearing Research, 52(3), 706–722.

    Google Scholar 

  • Sharma, M., Purdy, S. C., & Kelly, A. S. (2012). A randomized control trial of interventions in school-aged children with auditory processing disorders. International Journal of Audiology, 51(7), 506–518.

    Google Scholar 

  • Shinn-Cunningham, B. G., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12(4), 283–299.

    Google Scholar 

  • Shrivastav, M. N., Humes, L. E., & Aylsworth, L. (2008). Temporal order discrimination of tonal sequences by younger and older adults: The role of duration and rate. The Journal of the Acoustical Society of America, 124(1), 462.

    Google Scholar 

  • Skoe, E., & Kraus, N. (2010). Auditory brain stem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302–324.

    Google Scholar 

  • Skoe, E., & Kraus, N. (2012). A little goes a long way: How the adult brain is shaped by musical training in childhood. The Journal of Neuroscience, 32(34), 11507–11510.

    Google Scholar 

  • Skoe, E., Nicol, T., & Kraus, N. (2011). Cross-phaseogram: Objective neural index of speech sound differentiation. Journal of Neuroscience Methods, 196(2), 308–317.

    Google Scholar 

  • Skoe, E., Krizman, J., & Kraus, N. (2013a). The impoverished brain: Disparities in maternal education affect the neural response to sound. The Journal of Neuroscience, 33(44), 17221–17231.

    Google Scholar 

  • Skoe, E., Krizman, J., Spitzer, E., & Kraus, N. (2013b). The auditory brainstem is a barometer of rapid auditory learning. Neuroscience, 243, 104–114.

    Google Scholar 

  • Song, J. H., Skoe, E., Wong, P. C. M., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892–1902.

    Google Scholar 

  • Song, J. H., Nicol, T., & Kraus, N. (2011). Test–retest reliability of the speech-evoked auditory brainstem response. Clinical Neurophysiology, 122(2), 346–355.

    Google Scholar 

  • Song, J. H., Skoe, E., Banai, K., & Kraus, N. (2012). Training to improve hearing speech in noise: Biological mechanisms. Cerebral Cortex, 22(5), 1180–1190.

    Google Scholar 

  • Souza, P., Boike, K., Witherell, K., & Tremblay, K. (2007). Prediction of speech recognition from audibility in older listeners with hearing loss: Effects of age, amplification, and background noise. Journal of the American Academy of Audiology, 18(1), 54–65.

    Google Scholar 

  • Sperling, A. J., Zhong-Lin, L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8(7), 862–863.

    Google Scholar 

  • Strait, D. L., O’Connell, S., Parbery-Clark, A., & Kraus, N. (2013). Musicians’ enhanced neural differentiation of speech sounds arises early in life: Developmental evidence from ages 3 to 30. Cerebral Cortex, 24(9), 2512–2521.

    Google Scholar 

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198.

    Google Scholar 

  • Tierney, A., Krizman, J., Skoe, E., Johnston, K., & Kraus, N. (2013). High school music classes enhance the neural processing of speech. Frontiers in Psychology, 4(855), 1–7.

    Google Scholar 

  • Tierney, A., Krizman, J., & Kraus, N. (2015). Music training changes the course of adolescent auditory development. Proceedings of the National Academy of Sciences of the USA, 112(32), 10062–10067.

    Google Scholar 

  • Tremblay, K., Kraus, N., Carrell, T. D., & McGee, T. (1997). Central auditory system plasticity: Generalization to novel stimuli following listening training. The Journal of the Acoustical Society of America, 102, 3762.

    Google Scholar 

  • Vander Werff, K. R., & Burns, K. S. (2011). Brain stem responses to speech in younger and older adults. Ear and Hearing, 32(2), 168–180.

    Google Scholar 

  • Walton, J. P., Simon, H., & Frisina, R. D. (2002). Age-related alterations in the neural coding of envelope periodicities. Journal of Neurophysiology, 88(2), 565–578.

    Google Scholar 

  • Wang, H., Turner, J. G., Ling, L., Parrish, J. L., Hughes, L. F., & Caspary, D. M. (2009). Age-related changes in glycine receptor subunit composition and binding in dorsal cochlear nucleus. Neuroscience, 160(1), 227–239.

    Google Scholar 

  • Weihing, J., Schochat, E., & Musiek, F. (2012). Ear and electrode effects reduce within-group variability in middle latency response amplitude measures. International Journal of Audiology, 51(5), 405–412.

    Google Scholar 

  • White-Schwoch, T., & Kraus, N. (2013). Physiologic discrimination of stop consonants relates to phonological skills in pre-readers: A biomarker for subsequent reading ability? Frontiers in Human Neuroscience, 7(899), 1–9.

    Google Scholar 

  • White-Schwoch, T., Carr, K. W., Anderson, S., Strait, D. L., & Kraus, N. (2013). Older adults benefit from music training early in life: Biological evidence for long-term training-driven plasticity. The Journal of Neuroscience, 33(45), 17667–17674.

    Google Scholar 

  • White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., Nicol, T., et al. (2015). Auditory processing in noise: A preschool biomarker for literacy. PLoS Biology, 13(7), e1002196.

    Google Scholar 

  • Wilson, W. J., & Arnott, W. (2012). Using different criteria to diagnose (C)APD: How big a difference does it make? Journal of Speech, Language, and Hearing Research, 56(1), 63–70.

    Google Scholar 

  • Wilson, W. J., Arnott, W., & Henning, C. (2013). A systematic review of electrophysiological outcomes following auditory training in school-age children with auditory processing deficits. International Journal of Audiology, 52(11), 721–730.

    Google Scholar 

  • Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.

    Google Scholar 

  • Wright, B. A., Lombardino, L. J., King, W. M., Puranik, C. S., Leonard, C. M., & Merzenich, M. M. (1997). Deficits in auditory temporal and spectral resolution in language-impaired children. Nature, 387(6629), 176–178.

    Google Scholar 

  • Zeng, F.-G., Kong, Y. Y., Michalewski, H. J., & Starr, A. (2005). Perceptual consequences of disrupted auditory nerve activity. Journal of Neurophysiology, 93(6), 3050–3063.

    Google Scholar 

  • Ziegler, J. S., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732–745.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Institutes of Health (R01 DC010016; R01 HD069414; T32 DC009399-01A10), the National Science Foundation (NSF BCS-0921275; 0842376), the National Association of Music Merchants, and the Knowles Hearing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kraus .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethics Requirements

Nina Kraus is chief scientific officer of Synaural, a company working to create a user-friendly measure of auditory processing.

Samira Anderson declares that she has no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kraus, N., Anderson, S. (2016). Auditory Processing Disorder: Biological Basis and Treatment Efficacy. In: Le Prell, C., Lobarinas, E., Popper, A., Fay, R. (eds) Translational Research in Audiology, Neurotology, and the Hearing Sciences. Springer Handbook of Auditory Research, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-40848-4_3

Download citation

Publish with us

Policies and ethics