Skip to main content

Clinical and Translational Research: Challenges to the Field

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 58))

Abstract

Clinical and translational research are essential to patient care. Throughout the volume, numerous examples and cases were provided; these served to illustrate the unique challenges that must be overcome and the work that lies ahead for advancing hearing healthcare. This final chapter provides a summary of common themes across chapters. Across various “disorders” such as auditory processing disorders, tinnitus, and sudden onset hearing loss, there were challenges related to differential diagnosis. Other challenges cut across noise-induced hearing loss, drug-induced hearing loss, and the other disorders listed above; there is a need for standardized metrics that allow for results to be compared among studies and for assessing novel treatment by researchers and clinicians. The overall healthcare goal is to develop an evidenced-based practice approach so that emerging treatments reflect the highest standard of demonstrated efficacy. The chapters contained in this volume provide an essential introduction to the processes, successes, and challenges associated with translational research and the goal of better health outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American Academy of Audiology. (2009). Position statement and clinical practice guidelines: Ototoxicity monitoring [Online, verified 7/5/2016]. http://audiology-web.s3.amazonaws.com/migrated/OtoMonGuidelines.pdf_539974c40999c1.58842217.pdf.

  • American Speech-Language-Hearing Association. (1994). Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy. ASHA, 36(Suppl. 12), 11–19.

    Google Scholar 

  • Anderson, J. M., & Campbell, K. (2015). Assessment of interventions to prevent drug-induced hearing loss. In J. M. Miller, C. G. Le Prell, & L. P. Rybak (Eds.), Oxidative stress in applied basic research and clinical practice: Free radicals in ENT pathology (pp. 243–269). New York: Humana Press.

    Google Scholar 

  • ANSI S3.6-1989, “American National Standard Specifications for Audiometers.”

    Google Scholar 

  • Baguley, D., & Norman, M. (2001). Tinnitus handicap inventory. Journal of the American Academy of Audiology, 12(7), 379–380.

    Google Scholar 

  • Bauer, C. A., Berry, J., & Brozoski, T. J. (2016). Clinical trials supported by the Tinnitus Research Consortium: Lessons learned, the Southern Illinois University experience. Hearing Research, 334, 65–71.

    Google Scholar 

  • Berlin, C. I., Hood, L., Morlet, T., Rose, K., & Brashears, S. (2003). Auditory neuropathy/dys-synchrony: Diagnosis and management. Mental Retardation and Developmental Disabilities Research Reviews, 9(4), 225–231.

    Google Scholar 

  • Berthelot, J. M., Le Goff, B., & Maugars, Y. (2011). The Hawthorne effect: Stronger than the placebo effect? Joint Bone Spine, 78(4), 335–336.

    Google Scholar 

  • Best, V., Gallun, F. J., Mason, C. R., Kidd, G., Jr., & Shinn-Cunningham, B. G. (2010). The impact of noise and hearing loss on the processing of simultaneous sentences. Ear and Hearing, 31(2), 213–220.

    Google Scholar 

  • Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., & Shinn-Cunningham, B. G. (2014). Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in Systems Neuroscience, 8, 26.

    Google Scholar 

  • Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. Journal of Neuroscience, 35(5), 2161–2172.

    Google Scholar 

  • Bramhall, N., Ong, B., Ko, J., & Parker, M. (2015). Speech perception ability in noise is correlated with auditory brainstem response wave I amplitude. Journal of the American Academy of Audiology, 26, 509–517.

    Google Scholar 

  • Buss, E., Labadie, R. F., Brown, C. J., Gross, A. J., Grose, J. H., & Pillsbury, H. C. (2002). Outcome of cochlear implantation in pediatric auditory neuropathy. Otology & Neurotology, 23(3), 328–332.

    Google Scholar 

  • Causon, A., Verschuur, C., & Newman, T. A. (2015). A retrospective analysis of the contribution of reported factors in cochlear implantation on hearing preservation outcomes. Otology & Neurotology, 36(7), 1137–1145.

    Google Scholar 

  • Chung, D. Y., Gannon, R. P., & Mason, K. (1984). Factors affecting the prevalence of tinnitus. Audiology, 23(5), 441–452.

    Google Scholar 

  • Clopton, B. M., & Spelman, F. A. (1982). Neural mechanisms relevant to the design of an auditory prosthesis. Location and electrical characteristics. Annals of Otology, Rhinology, and Laryngology (Supplement), 98, 9–14.

    Google Scholar 

  • Crane, R. A., Camilon, M., Nguyen, S., & Meyer, T. A. (2015). Steroids for treatment of sudden sensorineural hearing loss: A meta-analysis of randomized controlled trials. Laryngoscope, 125(1), 209–217.

    Google Scholar 

  • De Leenheer, E. M., Dhooge, I. J., Veuillet, E., Lina-Granade, G., & Truy, E. (2008). Cochlear implantation in 3 adults with auditory neuropathy/auditory dys-synchrony. B-ENT, 4(3), 183–191.

    Google Scholar 

  • Dobie, R. A. (1999). A review of randomized clinical trials in tinnitus. Laryngoscope, 109(8), 1202–1211.

    Google Scholar 

  • Dobie, R. A., Sakai, C. S., Sullivan, M. D., Katon, W. J., & Russo, J. (1993). Antidepressant treatment of tinnitus patients: Report of a randomized clinical trial and clinical prediction of benefit. American Journal of Otology, 14(1), 18–23.

    Google Scholar 

  • Dollaghan, C. A. (2004). Evidence-based practice in communication disorders: What do we know, and when do we know it? Journal of Communication Disorders, 37(5), 391–400.

    Google Scholar 

  • Duckert, L. G., & Miller, J. M. (1984). Morphological changes following cochlear implantation in the animal model. Acta Oto-Laryngologica Supplementum, 411, 28–37.

    Google Scholar 

  • Duckert, L. G., & Miller, J. M. (1986). Mechanisms of electrically induced damage after cochlear implantation. Annals of Otology, Rhinology, and Laryngology, 95(2 Pt 1), 185–189.

    Google Scholar 

  • Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: Historical aspects and future prospects. Anatomical Record, 295(11), 1967–1980.

    Google Scholar 

  • Farhadi, M., Jalessi, M., Salehian, P., Ghavi, F. F., Emamjomeh, H., et al. (2013). Dexamethasone eluting cochlear implant: Histological study in animal model. Cochlear Implants International, 14(1), 45–50.

    Google Scholar 

  • Fernandes, N. F., Morettin, M., Yamaguti, E. H., Costa, O. A., & Bevilacqua, M. C. (2015). Performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implant: A systematic review. Brazilian Journal of Otorhinolaryngology, 81(1), 85–96.

    Google Scholar 

  • Fernandez, K.A., Jeffers, P.W., Lall, K., Liberman, M.C., & Kujawa, S.G. (2015). Aging after noise exposure: Acceleration of cochlear synaptopathy in “recovered” ears. Journal of Neuroscience, 35, 7509–7520.

    Google Scholar 

  • Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology, 110(3), 577–586.

    Google Scholar 

  • Gaddam, A., & Ferraro, J.A. (2008). ABR recordings in newborns using an ear canal electrode. International Journal of Audiology, 47(8), 499–504.

    Google Scholar 

  • Gu, J. W., Halpin, C. F., Nam, E. C., Levine, R. A., & Melcher, J. R. (2010). Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. Journal of Neurophysiology, 104(6), 3361–3370.

    Google Scholar 

  • Gwon, T. M., Min, K. S., Kim, J. H., Oh, S. H., Lee, H. S., et al. (2015). Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomedical Microdevices, 17(2), 32.

    Google Scholar 

  • Hall, J. W. I. (1992). Handbook of auditory evoked responses. Boston: Allyn and Bacon.

    Google Scholar 

  • Hall, K. T., & Kaptchuk, T. J. (2013). Genetic biomarkers of placebo response: What could it mean for future trial design? Clinical Investigation (London), 3(4), 311–314.

    Google Scholar 

  • Hall, K. T., Lembo, A. J., Kirsch, I., Ziogas, D. C., Douaiher, J., et al. (2012). Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS ONE, 7(10), e48135.

    Google Scholar 

  • Hall, K. T., Loscalzo, J., & Kaptchuk, T. J. (2015). Genetics and the placebo effect: The placebome. Trends in Molecular Medicine, 21(5), 285–294.

    Google Scholar 

  • Hellstrom, P. A., Axelsson, A., & Costa, O. (1998). Temporary threshold shift induced by music. Scandinavian Audiology Supplementum, 48, 87–94.

    Google Scholar 

  • Hendricks, J. L., Chikar, J. A., Crumling, M. A., Raphael, Y., & Martin, D. C. (2008). Localized cell and drug delivery for auditory prostheses. Hearing Research, 242(1–2), 117–131.

    Google Scholar 

  • Henry, J. A., Griest, S., Thielman, E., McMillan, G., Kaelin, C., & Carlson, K. F. (2016). Tinnitus Functional Index: Development, validation, outcomes research, and clinical application. Hearing Research, 334, 58–64.

    Google Scholar 

  • Henry, J. L., & Wilson, P. H. (1998). The psychometric properties of two measures of tinnitus complaint and handicap. International Tinnitus Journal, 4(2), 114–121.

    Google Scholar 

  • Hickox, A. E., & Liberman, M. C. (2014). Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? Journal of Neurophysiology, 111(3), 552–564.

    Google Scholar 

  • Hoare, D. J., & Hall, D. A. (2011). Clinical guidelines and practice: A commentary on the complexity of tinnitus management. Evaluation and the Health Professions, 34(4), 413–420.

    Google Scholar 

  • Hood, L. J. (2011). Variation in auditory neuropathy spectrum disorder: Implications for evaluation and management. Seminars in Hearing, 32(2), 117–122.

    Google Scholar 

  • Hope, A. J., Luxon, L. M., & Bamiou, D. E. (2013). Effects of chronic noise exposure on speech-in-noise perception in the presence of normal audiometry. Journal of Laryngology and Otology, 127(3), 233–238.

    Google Scholar 

  • House, J. W., & Brackmann, D. E. (1981). Tinnitus: Surgical treatment. Ciba Foundation Symposium, 85, 204–216.

    Google Scholar 

  • Hu, Z., & Ulfendahl, M. (2013). The potential of stem cells for the restoration of auditory function in humans. Regenerative Medicine, 8(3), 309–318.

    Google Scholar 

  • ISO/R226-1985, “International Standard Organization Normal Equal-Loudness Contours for Pure Tones Under Free-Field Listening Conditions.”

    Google Scholar 

  • Jensen, J. B., Lysaght, A. C., Liberman, M. C., Qvortrup, K., & Stankovic, K. M. (2015). Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One, 10(5), e0125160.

    Google Scholar 

  • Jeong, S. W., & Kim, L. S. (2013). Auditory neuropathy spectrum disorder: Predictive value of radiologic studies and electrophysiologic tests on cochlear implant outcomes and its radiologic classification. Acta Oto-Laryngologica, 133(7), 714–721.

    Google Scholar 

  • Ji, F., Li, J., Hong, M., Chen, A., Jiao, Q., et al. (2015). Determination of benefits of cochlear implantation in children with auditory neuropathy. PLoS ONE, 10(5), e0127566.

    Google Scholar 

  • Klein, A. J., & Mills, J. H. (1981). Physiological and psychophysical measures from humans with temporary threshold shift. The Journal of the Acoustical Society of America, 70(4), 1045–1053.

    Google Scholar 

  • Konrad-Martin, D., Dille, M. F., McMillan, G., Griest, S., McDermott, D., et al. (2012). Age-related changes in the auditory brainstem response. Journal of the American Academy of Audiology, 23(1), 18–35; quiz 74–75.

    Google Scholar 

  • Kontorinis, G., Lloyd, S. K., Henderson, L., Jayewardene-Aston, D., Milward, K., et al. (2014). Cochlear implantation in children with auditory neuropathy spectrum disorders. Cochlear Implants International, 15(Suppl. 1), S51–S54.

    Google Scholar 

  • Kopke, R., Slade, M. D., Jackson, R., Hammill, T., Fausti, S., et al. (2015). Efficacy and safety of N-acetylcysteine in prevention of noise induced hearing loss: A randomized clinical trial. Hearing Research, 323, 40–50.

    Google Scholar 

  • Kujawa, S. G. (2014). Putting the ‘neural’ back in sensorineural: Primary cochlear neurodegeneration in noise and aging. The Hearing Journal, 67(11), 8.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. Journal of Neuroscience, 26(7), 2115–2123.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077–14085.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330(Pt B), 191–199. 

    Google Scholar 

  • Langguth, B., Salvi, R., & Elgoyhen, A. B. (2009). Emerging pharmacotherapy of tinnitus. Expert Opinion on Emerging Drugs, 14(4), 687–702.

    Google Scholar 

  • Langguth, B., Kleinjung, T., & Landgrebe, M. (2011). Tinnitus: The complexity of standardization. Evaluation and the Health Professions, 34(4), 429–433.

    Google Scholar 

  • Lee, P. C., Senders, C. W., Gantz, B. J., & Otto, S. R. (1985). Transient sensorineural hearing loss after overuse of portable headphone cassette radios. Otolaryngology–Head and Neck Surgery, 93(5), 622–625.

    Google Scholar 

  • Le Prell, C. G., & Lobarinas, E. (2015). Strategies for assessing antioxidant efficacy in clinical trials. In J. M. Miller, C. G. Le Prell & L. P. Rybak (Eds.), Oxidative stress in applied basic research and clinical practice: Free radicals in ENT pathology (pp. 163–192). New York: Humana Press.

    Google Scholar 

  • Le Prell, C. G. & Lobarinas, E. (2016). No relationship between recreational noise history and performance on the Words-in-Noise (WIN) test in normal hearing young adults. Association for Research in Otolaryngology, 39th Midwinter Meeting Abstracts, page 68. Mt. Royal, NJ: Association for Research in Otolaryngology.

    Google Scholar 

  • Le Prell, C. G., & Brungart, D. S. (in press). Potential effects of noise on hearing: Supra-threshold testing using speech-in-noise and auditory evoked potentials. Otology & Neurotology.

    Google Scholar 

  • Lin, C. Y., Wu, J. L., Shih, T. S., Tsai, P. J., Sun, Y. M., et al. (2010). N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hearing Research, 269(1–2), 42–47.

    Google Scholar 

  • Lin, H. W., Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605–616.

    Google Scholar 

  • Lobarinas, E., Spankovich, C., & Le Prell, C. G. (2015). Normal thresholds but poorer hearing in noise following a “deafferenting” exposure. Abstracts of the Association for Research in Otolaryngology, 38, 447.

    Google Scholar 

  • Maison, S. F., Usubuchi, H., & Liberman, M. C. (2013). Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. Journal of Neuroscience, 33(13), 5542–5552.

    Google Scholar 

  • Makary, C. A., Shin, J., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochlear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology, 12(6), 711–717.

    Google Scholar 

  • McCarney, R., Warner, J., Iliffe, S., van Haselen, R., Griffin, M., & Fisher, P. (2007). The Hawthorne Effect: A randomised, controlled trial. BMC Medical Research Methodology, 7, 30.

    Google Scholar 

  • Meyer, H., Stover, T., Fouchet, F., Bastiat, G., Saulnier, P., et al. (2012). Lipidic nanocapsule drug delivery: Neuronal protection for cochlear implant optimization. International Journal of Nanomedicine, 7, 2449–2464.

    Google Scholar 

  • Michalewski, H. J., Starr, A., Nguyen, T. T., Kong, Y. Y., & Zeng, F.-G. (2005). Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy. Clinical Neurophysiology, 116(3), 669–680.

    Google Scholar 

  • Middlebrooks, J. C., & Snyder, R. L. (2007). Auditory prosthesis with a penetrating nerve array. Journal of the Association for Research in Otolaryngology, 8(2), 258–279.

    Google Scholar 

  • Middlebrooks, J. C., & Snyder, R. L. (2008). Intraneural stimulation for auditory prosthesis: Modiolar trunk and intracranial stimulation sites. Hearing Research, 242(1–2), 52–63.

    Google Scholar 

  • Miller, J. M., Duckert, L. G., Malone, M. A., & Pfingst, B. E. (1983). Cochlear prostheses: Stimulation-induced damage. Annals of Otology, Rhinology, and Laryngology, 92(6 Pt 1), 599–609.

    Google Scholar 

  • Moodie, S. T., Kothari, A., Bagatto, M. P., Seewald, R., Miller, L. T., & Scollie, S. D. (2011). Knowledge translation in audiology: Promoting the clinical application of best evidence. Trends in Amplification, 15(1), 5–22.

    Google Scholar 

  • Moser, T., Predoehl, F., & Starr, A. (2013). Review of hair cell synapse defects in sensorineural hearing impairment. Otology & Neurotology, 34(6), 995–1004.

    Google Scholar 

  • National Health Service (NHS). (2008). Guidelines for identification and management of infants and young children with auditory neuropathy spectrum disorder. http://www.childrenscolorado.org/File%20Library/Conditions-Programs/ASL/ANSD-Monograph-Bill-Daniels-Center-for-Childrens-Hearing.pdf. Accessed November 19, 2015.

  • National Institute for Occupational Safety and Health (NIOSH). (1998). Criteria for a Recommended Standard, Occupational Noise Exposure, DHHS (NIOSH) Publication No. 98–126.

    Google Scholar 

  • Nguyen, Y., Couloigner, V., Rudic, M., Nguyen, Y., Couloigner, V., et al. (2009). An animal model of cochlear implantation with an intracochlear fluid delivery system. Acta Oto-Laryngologica, 129(11), 1153–1159.

    Google Scholar 

  • Occupational Safety and Health Administration (OSHA). (1983). 29 CFR 1910.95. Occupational Noise Exposure; Hearing Conservation Amendment; Final Rule, effective 8 March 1983. U.S. Department of Labor, Occupational Safety & Health Administration.

    Google Scholar 

  • Pinyon, J. L., Tadros, S. F., Froud, K. E., Y Wong, A. C., Tompson, I. T., et al. (2014). Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Science Translational Medicine, 6(233), 233–254.

    Google Scholar 

  • Prendergast, G., Guest, H., Hall, D., Kluk de-Kort, K., Léger, A., et al. (2016). An investigation of hidden hearing loss in young adults with normal hearing. Association for Research in Otolaryngology, 39th Midwinter Meeting Abstracts, page 202. Mt. Royal, NJ: Association for Research in Otolaryngology.

    Google Scholar 

  • Pugsley, S., Stuart, A., Kalinowski, J., & Armson, J. (1993). Changes in hearing sensitivity following portable stereo system use. American Journal of Audiology, 2, 64–67.

    Google Scholar 

  • Quaranta, A., Scaringi, A., Bartoli, R., Margarito, M. A., & Quaranta, N. (2004). The effects of ‘supra-physiological’ vitamin B12 administration on temporary threshold shift. International Journal of Audiology, 43(3), 162–165.

    Google Scholar 

  • Quaranta, N., Dicorato, A., Matera, V., D’Elia, A., & Quaranta, A. (2012). The effect of alpha-lipoic acid on temporary threshold shift in humans: A preliminary study. Acta Otorhinolaryngologica Italica, 32(6), 380–385.

    Google Scholar 

  • Rauch, S. D. (2015). Clinical trials in acute hearing loss. Presented at “Rational Pharmacotherapy for Acute Hearing Loss-Recent Advances and Perspectives,” a corporate symposium sponsored by Auris Medical, September 28, 2015, Dallas, TX.

    Google Scholar 

  • Rauch, S. D., Halpin, C. F., Antonelli, P. J., Babu, S., Carey, J. P., et al. (2011). Oral vs intratympanic corticosteroid therapy for idiopathic sudden sensorineural hearing loss: A randomized trial. JAMA, 305(20), 2071–2079.

    Google Scholar 

  • Reiss, L. A., Stark, G., Nguyen-Huynh, A. T., Spear, K. A., Zhang, H., et al. (2015). Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired guinea pig model. Hearing Research, 327, 163–174.

    Google Scholar 

  • Richardson, R. T., Wise, A. K., Thompson, B. C., Flynn, B. O., Atkinson, P. J., et al. (2009). Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 30(13), 2614–2624.

    Google Scholar 

  • Roush, P. (2008). Management of children with auditory neuropathy spectrum disorder: Hearing aids. Guidelines for identificatation and management of infants and young children with auditory neuropathy spectrum disorder, 30–32. http://www.childrenscolorado.org/File%20Library/Conditions-Programs/ASL/ANSD-Monograph-Bill-Daniels-Center-for-Childrens-Hearing.pdf. Accessed November 19, 2015.

  • Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the USA, 108(37), 15516–15521.

    Google Scholar 

  • Samelli, A. G., Matas, C. G., Carvallo, R. M., Gomes, R. F., de Beija, C. S., et al. (2012). Audiological and electrophysiological assessment of professional pop/rock musicians. Noise & Health, 14(56), 6–12.

    Google Scholar 

  • Santa Maria, P. L., Gluth, M. B., Yuan, Y., Atlas, M. D., & Blevins, N. H. (2014). Hearing preservation surgery for cochlear implantation: A meta-analysis. Otology & Neurotology, 35(10), e256–e269.

    Google Scholar 

  • Santarelli, R., Starr, A., Michalewski, H. J., & Arslan, E. (2008). Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy. Clinical Neurophysiology, 119(5), 1028–1041.

    Google Scholar 

  • Searchfield, G. (2011). A commentary on the complexity of tinnitus management: Clinical guidelines provide a path through the fog. Evaluation and the Health Professions, 34(4), 421–428.

    Google Scholar 

  • Servick, K. (2014). Outsmarting the placebo effect. Science, 345(6203), 1446–1447.

    Google Scholar 

  • Shallop, J. K. (2008). Management of children with auditory neuropathy spectrum disorder: Cochlear implants. Guidelines for identification and management of infants and young children with auditory neuropathy spectrum disorder, 33–34. http://www.childrenscolorado.org/File%20Library/Conditions-Programs/ASL/ANSD-Monograph-Bill-Daniels-Center-for-Childrens-Hearing.pdf. Accessed November 19, 2015.

  • Shrivastav, M. N. (2012). Suprathreshold auditory processing deficits in noise-induced hearing loss. In C. G. Le Prell, D. Henderson, R. R. Fay & A. N. Popper (Eds.), Noise-induced hearing loss: Scientific advances. (pp. 137–150). New York: Springer Science + Business Media.

    Google Scholar 

  • Simmons, J. L. (2009). Cochlear implants in auditory neuropathy spectrum disorder. This article first appeared in ASHA Access Audiology, 8(3), May/June 2009. Available at http://www.asha.org/aud/articles/CochlearImplantsANSD/. Accessed November 19, 2015.

  • Sininger, Y. (2008). Auditory neuropathy spectrum disorder: Challenges and questions. Guidelines for identification and management of infants and young children with auditory neuropathy spectrum disorder, 9–14. http://www.childrenscolorado.org/File%20Library/Conditions-Programs/ASL/ANSD-Monograph-Bill-Daniels-Center-for-Childrens-Hearing.pdf. Accessed November 19, 2015.

  • Spankovich, C., Griffiths, S.K., Lobarinas, E., Morgenstein, K.E., de la Calle, S., et al. (2014). Temporary threshold shift after impulse-noise during video game play: Laboratory data. International Journal of Audiology, 53 Supplement 2, S53–S65.

    Google Scholar 

  • Spelman, F. A., Clopton, B. M., & Pfingst, B. E. (1982). Tissue impedance and current flow in the implanted ear: Implications for the cochlear prosthesis. Annals of Otology, Rhinology, and Laryngology Supplement, 98, 3–8.

    Google Scholar 

  • Stamper, G. C., & Johnson, T. A. (2015a). Auditory function in normal-hearing, noise-exposed human ears. Ear and Hearing, 36(2), 172–184.

    Google Scholar 

  • Stamper, G. C., & Johnson, T. A. (2015b). Letter to the Editor: Examination of potential sex influences in auditory function in normal-hearing, noise-exposed human ears. Ear Hear, 36, 172–184. Ear and Hearing, 36(6), 738–740.

    Google Scholar 

  • Starr, A., Picton, T. W., Sininger, Y., Hood, L. J., & Berlin, C. I. (1996). Auditory neuropathy. Brain, 119 (Pt 3), 741–753.

    Google Scholar 

  • Starr, A., Sininger, Y. S., & Pratt, H. (2000). The varieties of auditory neuropathy. Journal of Basic and Clinical Physiology and Pharmacology, 11(3), 215–230.

    Google Scholar 

  • Tanaka, C., Nguyen-Huynh, A., Loera, K., Stark, G., & Reiss, L. (2014). Factors associated with hearing loss in a normal-hearing guinea pig model of hybrid cochlear implants. Hearing Research, 316, 82–93.

    Google Scholar 

  • Tykocinski, M., & Cowan, R. S. (2005). Poly-vinyl-alcohol (PVA) coating of cochlear implant electrode arrays: An in-vivo biosafety study. Cochlear Implants International, 6(1), 16–30.

    Google Scholar 

  • Tyler, R., Coelho, C., Tao, P., Ji, H., Noble, W., et al. (2008). Identifying tinnitus subgroups with cluster analysis. American Journal of Audiology, 17(2), S176–S184.

    Google Scholar 

  • Valente, M. (2005). Using evidence-based principles to make clinical decisions. Journal of the American Academy of Audiology, 16(10), 768–769.

    Google Scholar 

  • Walton, J., Gibson, W. P., Sanli, H., & Prelog, K. (2008). Predicting cochlear implant outcomes in children with auditory neuropathy. Otology & Neurotology, 29(3), 302–309.

    Google Scholar 

  • Wang, Y., & Ren, C. (2012). Effects of repeated “benign” noise exposures in young CBA mice: Shedding light on age-related hearing loss. Journal of the Association for Research in Otolaryngology, 13(4), 505–515.

    Google Scholar 

  • Wei, B. P., Stathopoulos, D., & O’Leary, S. (2013). Steroids for idiopathic sudden sensorineural hearing loss. Cochrane Database of Systematic Reviews, 7, Cd003998.

    Google Scholar 

  • Wilson, P. H., Henry, J., Bowen, M., & Haralambous, G. (1991). Tinnitus reaction questionnaire: Psychometric properties of a measure of distress associated with tinnitus. Journal of Speech and Hearing Research, 34(1), 197–201.

    Google Scholar 

  • Winkler, G., Hall, K. T., & Kaptchuk, T. J. (2015). Methods and kits for determining a placebo profile in subjects for clinical trials and for treatment of patients. US Patent Application 20150110718, published April 23, 2015; amended in US Patent Application 20150315651 published November 5, 2015. United States Patent Trademark Office.

    Google Scholar 

  • Wynne, D. P., Zeng, F.-G., Bhatt, S., Michalewski, H. J., Dimitrijevic, A., & Starr, A. (2013). Loudness adaptation accompanying ribbon synapse and auditory nerve disorders. Brain, 136(Pt 5), 1626–1638.

    Google Scholar 

  • Young, E. D. (2012). Neural coding of sound with cochlear damage. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-induced hearing loss: Scientific advances (pp. 87–135). New York: Springer Science + Business Media.

    Google Scholar 

  • Zeman, F., Koller, M., Figueiredo, R., Aazevedo, A., Rates, M., et al. (2011). Tinnitus handicap inventory for evaluating treatment effects: Which changes are clinically relevant? Otolaryngology–Head and Neck Surgery, 145(2), 282–287.

    Google Scholar 

  • Zeng, F.-G., Oba, S., Garde, S., Sininger, Y., & Starr, A. (1999). Temporal and speech processing deficits in auditory neuropathy. NeuroReport, 10(16), 3429–3435.

    Google Scholar 

  • Zeng, F.-G., Kong, Y. Y., Michalewski, H. J., & Starr, A. (2005). Perceptual consequences of disrupted auditory nerve activity. Journal of Neurophysiology, 93(6), 3050–3063.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen G. Le Prell .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethics Requirements

Colleen Le Prell has received contract funding from industry sources including Sound Pharmaceuticals, Inc., Edison Pharmaceuticals, Inc., Hearing Health Sciences, Inc., and MaxSound, Inc. She is a co-inventor on patents assigned to the University of Michigan and the University of Florida.

Edward Lobarinas declares no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Prell, C.G., Lobarinas, E. (2016). Clinical and Translational Research: Challenges to the Field. In: Le Prell, C., Lobarinas, E., Popper, A., Fay, R. (eds) Translational Research in Audiology, Neurotology, and the Hearing Sciences. Springer Handbook of Auditory Research, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-40848-4_10

Download citation

Publish with us

Policies and ethics