Skip to main content

Flow Analysis of a Wave-Energy Air Turbine with the SUPG/PSPG Method and DCDD

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

We present flow analysis of a wave-energy air turbine, specifically a Wells turbine. The analysis is based on the Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) methods and discontinuity-capturing directional dissipation (DCDD). The DCDD, first introduced to complement the SUPG/PSPG method in computation of incompressible flows in the presence of sharp solution gradients, was also shown to perform well in turbulent-flow test computations when compared to the Smagorinsky large eddy simulation model. Our computational analysis of the Wells turbine here, with results that compare favorably to the available experimental data, shows that the DCDD method performs well also in turbomachinery flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazilevs, Y., Hsu, M.-C., Akkerman, I., Wright, S., Takizawa, K., Henicke, B., Spielman, T., Tezduyar, T.E.: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int. J. Numer. Methods Fluids 65, 207–235 (2011)

    MATH  Google Scholar 

  2. Takizawa, K., Henicke, B., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 333–344 (2011)

    Article  MATH  Google Scholar 

  3. Takizawa, K., Henicke, B., Montes, D., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 647–657 (2011)

    Article  MATH  Google Scholar 

  4. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput. Mech. 50, 499–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hsu, M.-C., Bazilevs, Y.: Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput. Mech. 50, 821–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs, Y., Hsu, M.-C., Takizawa, K., Tezduyar, T.E.: ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math. Models Methods Appl. Sci. 22 (supp02), 1230002 (2012)

    Article  MATH  Google Scholar 

  7. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, Chichester (2013). ISBN: 978-0470978771

    Book  MATH  Google Scholar 

  8. Takizawa, K., Tezduyar, T.E., McIntyre, S., Kostov, N., Kolesar, R., Habluetzel, C.: Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput. Mech. 53, 1–15 (2014)

    Article  MATH  Google Scholar 

  9. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.-C., Øiseth, O., Mathisen, K.M., Kostov, N., McIntyre, S.: Engineering analysis and design with ALE-VMS and space–time methods. Arch. Comput. Methods Eng. 21, 481–508 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bazilevs, Y., Takizawa, K., Tezduyar, T.E., Hsu, M.-C., Kostov, N., McIntyre, S.: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch. Comput. Methods Eng. 21, 359–398 (2014)

    Article  MathSciNet  Google Scholar 

  11. Takizawa, K., Tezduyar, T.E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., Montel, K.: Space–time VMS method for flow computations with slip interfaces (ST-SI). Math. Models Methods Appl. Sci. 25, 2377–2406 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raghunathan, S.: The Wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 31, 335–386 (1995)

    Article  Google Scholar 

  13. Kim, T.H., Setoguchi, T., Kaneko, K., Raghunathan, S.: Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renew. Energy 25, 235–248 (2002)

    Article  Google Scholar 

  14. Thakker, A., Abdulhadi, R.: The performance of Wells turbine under bi-directional airflow. Renew. Energy 33, 2467–2474 (2008)

    Article  Google Scholar 

  15. Corsini, A., Marchegiani, A., Minotti, S., Rispoli, F.: On the use of blade sweep in Wells turbines for small power generation. In: Third International Conference on Applied Energy, Perugia, Italy (2011)

    Google Scholar 

  16. Corsini, A., Rispoli, F., Tezduyar, T.E.: Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique. J. Appl. Mech. 79, 010910 (2012)

    Article  Google Scholar 

  17. Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. Report 460, NACA (1933)

    Google Scholar 

  18. Tucker, P.G.: Computation of unsteady turbomachinery flows: part 2, LES and hybrids. Prog. Aerosp. Sci. 47, 546–569 (2011)

    Article  Google Scholar 

  19. Jakirlic, S., Zürker, R.J., John-Puthenveettil, G., Kniesner, B., Tropea, C.: Computational modelling of flow and scalar transport accounting for near-wall turbulence with relevance to gas turbine combustors. Flow Combust. Adv. Gas Turbine Combust. 1581, 263–294 (2012)

    Article  Google Scholar 

  20. Borello, D., Corsini, A., Delibra, G., Fiorito, M., Sheard, A.G.: Large eddy simulation of a tunnel ventilation fan. J. Fluids Eng. 135, 071102 (2013)

    Article  Google Scholar 

  21. Krappel, T., Ruprecht, A., Riedelbauch, S.: Flow simulation of Francis turbines using hybrid RANS-LES turbulence models. High Perform. Comput. Sci. Eng. 14, 417–431 (2014)

    Google Scholar 

  22. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195, 1621–1632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tezduyar, T.E., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput. Mech. 38, 469–481 (2006)

    Article  MATH  Google Scholar 

  27. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, T.J.R.: Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MATH  Google Scholar 

  29. Hughes, T.J.R., Oberai, A.A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13, 1784–1799 (2001)

    Article  MATH  Google Scholar 

  30. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bazilevs, Y., Akkerman, I.: Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J. Comput. Phys. 229, 3402–3414 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Takizawa, K., Tezduyar, T.E.: Multiscale space–time fluid–structure interaction techniques. Comput. Mech. 48, 247–267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Takizawa, K., Tezduyar, T.E.: Space–time fluid–structure interaction methods. Math. Models Methods Appl. Sci. 22 (supp02), 1230001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Long, C.C., Marsden, A.L., Schjodt, K.: ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math. Models Methods Appl. Sci. 24, 2437–2486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takizawa, K.: Computational engineering analysis with the new-generation space–time methods. Comput. Mech. 54, 193–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Takizawa, K., Tezduyar, T.E., Buscher, A., Asada, S.: Space–time fluid mechanics computation of heart valve models. Comput. Mech. 54, 973–986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Takizawa, K., Tezduyar, T.E., Buscher, A.: Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput. Mech. 55, 1131–1141 (2015)

    Article  Google Scholar 

  38. Bazilevs, Y., Korobenko, A., Deng, X., Yan, J., Kinzel, M., Dabiri, J.O.: FSI modeling of vertical-axis wind turbines. J. Appl. Mech. 81, 081006 (2014)

    Article  Google Scholar 

  39. Bazilevs, Y., Korobenko, A., Deng, X., Yan, J.: Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int. J. Numer. Methods Eng. 102, 766–783 (2015)

    Article  MathSciNet  Google Scholar 

  40. Takizawa, K., Tezduyar, T.E., Kuraishi, T.: Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math. Models Methods Appl. Sci. 25, 2227–2255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bazilevs, Y., Korobenko, A., Yan, J., Pal, A., Gohari, S.M.I., Sarkar, S.: ALE–VMS formulation for stratified turbulent incompressible flows with applications. Math. Models Methods Appl. Sci. 25, 2349–2375 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math. Models Methods Appl. Sci. 25, 2217–2226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rispoli, F., Borrelli, P., Tezduyar, T.E.: Discontinuity-capturing directional dissipation (DCDD) in computation of turbulent flows. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 (CD-ROM), Jyvaskyla (2004)

    Google Scholar 

  44. Rispoli, F., Borrelli, P., Tezduyar, T.E.: Computation of turbulent flows with the discontinuity-capturing directional dissipation DCDD. In: Proceedings of the 6th World Congress on Computational Mechanics (CD-ROM), Beijing (2004)

    Google Scholar 

  45. Rispoli, F., Borrelli, P., Tezduyar, T.E.: DCDD in finite element computation of turbulent flows. In: Proceedings of the 6th World Congress on Computational Mechanics. Tsinghua University Press/Springer, Beijing (2004)

    Google Scholar 

  46. Rispoli, F., Corsini, A., Tezduyar, T.E.: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput. Fluids 36, 121–126 (2007)

    Article  MATH  Google Scholar 

  47. Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190, 411–430 (2000)

    Article  MATH  Google Scholar 

  48. Tezduyar, T.E., Park, Y.J.: Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 59, 307–325 (1986)

    Article  MATH  Google Scholar 

  49. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  50. Dean, R.B.: Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. 10, 215–223 (1978)

    Article  Google Scholar 

  51. Bassetti, M., Corsini, A., Delibra, G., Rispoli, F., Ruggeri, M., Venturini, P.: Design and verification of a micro Wells turbine for Mediterranean operations. In: 11th European Turbomachinery Conference, Madrid (2015)

    Google Scholar 

  52. Gato, L.M.C., Warfield, V., Thakker, A.: Performance of a high-solidity Wells turbine for an OWC wave power plant. J. Energy Resour. Technol. 118, 263–268 (1996)

    Article  Google Scholar 

  53. Corsini, A., Marro, E., Rispoli, F., Tortora, E.: Space-time mapping of wave energy conversion potential in Mediterranean Sea states. In: ASME-ATI-UIT Conference on Thermal and Environmental Issues in Energy Systems, Sorrento (2010)

    Google Scholar 

  54. Corsini, A., Rispoli, F.: Using sweep to extend stall-free operational range in axial fan rotors. J. Power Energy 218, 129–139 (2004)

    Article  Google Scholar 

  55. Haller, G.: An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge MIUR support under the project Ateneo and the Visiting Professor Program at University of Rome “La Sapienza.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Corsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardillo, L., Corsini, A., Delibra, G., Rispoli, F., Tezduyar, T.E. (2016). Flow Analysis of a Wave-Energy Air Turbine with the SUPG/PSPG Method and DCDD. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_4

Download citation

Publish with us

Policies and ethics