Skip to main content

Finite-Element/Boundary-Element Coupling for Inflatables: Effective Contact Resolution

  • Chapter
  • First Online:
  • 2993 Accesses

Abstract

The finite-element/boundary-element technique for inflatable structures has been utilized successfully for airbag simulations. Its virtues in resolving the complex contact problem in such cases have been demonstrated in 2D in van Opstal et al. (Comput. Mech. 50(6):779–788, 2012) and theoretically motivated in 3D in van Opstal et al. (Comput. Mech. Comput. Methods Appl. Mech. Eng. 284:637–663, 2015). In this contribution, this is extended to a 3D test case, demonstrating the merits of this technique for real-world applications. Secondly, it is shown how this technique naturally fits into and greatly profits from an isogeometric setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bischoff, M., Wall, W.A., Bletzinger, K.-U., Ramm, E.: Models and finite elements for thin-walled structures. In: Encyclopedia of Computational Mechanics, vol. 2: Structures, chap. 3, pp. 59–137. Wiley, Chichester (2004)

    Google Scholar 

  2. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10 (6), 350–355 (1978)

    Article  Google Scholar 

  3. Hsu, M.-C., Kamensky, D., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54, 1055–1071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson, A.A., Tezduyar, T.E.: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 119, 73–94 (1994)

    Article  MATH  Google Scholar 

  6. Johnson, A.A., Tezduyar, T.E.: Advanced mesh generation and update methods for 3d flow simulations. Comput. Mech. 23, 130–143 (1999)

    Article  MATH  Google Scholar 

  7. Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 284, 1005–1053 (2015)

    Article  MathSciNet  Google Scholar 

  8. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mechanics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  9. Scott, M.A., Simpson, R.N., Evans, J.A., Lipton, S., Bordas, S.P.A., Hughes, T.J.R., Sederberg, T.W.: Isogeometric boundary element analysis using unstructured T-splines. Comput. Methods Appl. Mech. Eng. 254, 197–221 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 295–404. ACM, New York (1998)

    Google Scholar 

  11. Takizawa, K., Spielman, T., Tezduyar, T.E.: Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput. Mech. 48, 345–364 (2011)

    Article  MATH  Google Scholar 

  12. Takizawa, K., Fritze, M., Montes, D., Spielman, T., Tezduyar, T.E.: Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput. Mech. 50, 835–854 (2012)

    Article  Google Scholar 

  13. Takizawa, K., Tezduyar, T.E., Boswell, C., Kolesar, R., Montel, K.: FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput. Mech. 54, 1203–1220 (2014)

    Article  MathSciNet  Google Scholar 

  14. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 38, 1–44 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Tezduyar, T.E., Takizawa, K., Moorman, C., Wright, S., Christopher, J.: Space-time finite element computation of complex fluid-structure interactions. Int. J. Numer. Methods Fluids 64, 1201–1218 (2010)

    Article  MATH  Google Scholar 

  16. van Opstal, T.M.: Numerical methods for inflatables with multiscale geometries. Ph.D. thesis, Eindhoven University of Technology (2013)

    Google Scholar 

  17. van Opstal, T.M., van Brummelen, E.H.: A finite-element/boundary-element method for large-displacement fluid-structure interaction with potential flow. Comput. Methods Appl. Mech. Eng. 266, 57–69 (2013). http://dx.doi.org/10.1016/j.cma.2013.07.0092013

    Article  MathSciNet  MATH  Google Scholar 

  18. van Opstal, T.M., van Brummelen, E.H., de Borst, R., Lewis, M.R.: A finite-element/boundary-element method for large-displacement fluid-structure interaction. Comput. Mech. 50 (6), 779–788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Opstal, T.M., van Brummelen, E.H., van Zwieten, G.J.: A finite-element/boundary-element method for three-dimensional, large-displacement fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 284, 637–663 (2015)

    Article  MathSciNet  Google Scholar 

  20. Wei, X., Zhang, Y., Hughes, T.J.R., Scott, M.A.: Truncated hierarchical Catmull–Clark subdivision with local refinement. Comput. Methods Appl. Mech. Eng. 291, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wick, T.: Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput. Mech. 53 (1), 29–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zore, U., Jüttler, B., Kosinka, J.: On the linear independence of (truncated) hierarchical subdivision splines. Geometry+ Simulation Report, 17 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. van Opstal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Opstal, T.M. (2016). Finite-Element/Boundary-Element Coupling for Inflatables: Effective Contact Resolution. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_37

Download citation

Publish with us

Policies and ethics