Skip to main content

Fluid–Structure Interaction Modeling and Isogeometric Analysis of a Hydraulic Arresting Gear at Full Scale

  • Chapter
  • First Online:
  • 3052 Accesses

Abstract

Fluid–structure interaction (FSI) analysis of a full-scale hydraulic arresting gear used to retard the forward motion of an aircraft landing on an aircraft-carrier deck is performed. The simulations make use of the recently developed core and special-purpose FSI techniques for other problem classes, specialized to the present application. A recently proposed interactive geometry modeling and parametric design platform for isogeometric analysis (IGA) is directly employed to create the arresting gear model, and illustrates a natural application of IGA to this problem class. The fluid mechanics and FSI simulation results are reported in terms of the arresting gear rotor loads and blade structural deformation and vibration. Excellent agreement is achieved with the experimental results for the arresting gear design simulated in this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Book  Google Scholar 

  3. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  4. Chiu, Y.-T.: Computational fluid dynamics simulations of hydraulic energy absorber. Master’s thesis, Virginia Polytechnic Institute and State University (1999)

    Google Scholar 

  5. Parker, R.V.: Arrestment considerations for the space shuttle. In: The Space Congress Proceedings, Wilmington, Delaware (1971)

    Google Scholar 

  6. Hsu, M.-C., Wang, C., Herrema, A.G., Schillinger, D., Ghoshal, A., Bazilevs, Y.: An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput. Math. Appl. (2015). http://dx.doi.org/10.1016/j.camwa.2015.04.002

    Google Scholar 

  7. Rhinoceros. http://www.rhino3d.com/ (2015)

  8. Grasshopper. http://www.grasshopper3d.com/ (2015)

  9. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wüchner, R., Bletzinger, K.-U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)

    MATH  Google Scholar 

  13. Takizawa, K., Bazilevs, Y., Tezduyar, T.E.: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch. Comput. Methods Eng. 19, 171–225 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bazilevs, Y., Hsu, M.-C., Takizawa, K., Tezduyar, T.E.: ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math. Mod. Methods Appl. Sci. 22 (supp02), 1230002 (2012)

    Article  MATH  Google Scholar 

  15. Bazilevs,Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36, 12–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196, 4853–4862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199, 780–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bazilevs, Y., Calo, V.M., Cottrel, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Akkerman, I., Bazilevs, Y., Kees, C.E., Farthing, M.W.: Isogeometric analysis of free-surface flow. J. Comput. Phys. 230, 4137–4152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kees, C.E., Akkerman, I., Farthing, M.W., Bazilevs, Y.: A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys. 230, 4536–4558 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Akkerman, I., Bazilevs, Y., Benson, D.J., Farthing, M.W., Kees, C.E.: Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. J. Appl. Mech. 79, 010905 (2012)

    Article  Google Scholar 

  22. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions. Comput. Mech. 50, 499–511 (2012). doi:10.1007/s00466-012-0686-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Akkerman, I., Dunaway, J., Kvandal, J., Spinks, J., Bazilevs, Y.: Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput. Mech. 50, 719–727 (2012)

    Article  Google Scholar 

  24. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17, 461–481 (2014)

    Article  Google Scholar 

  25. Bazilevs, Y., Hughes, T.J.R.: NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput. Mech. 43, 143–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hsu, M.-C., Bazilevs, Y.: Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput. Mech. 50, 821–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bazilevs, Y., Hsu, M.-C., Scott, M.A.: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput. Methods Appl. Mech. Eng. 249–252, 28–41 (2012)

    Article  MathSciNet  Google Scholar 

  28. Tezduyar, T.E., Behr, M., Mittal, S., Johnson, A.A.: Computation of unsteady incompressible flows with the finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, pp. 7–24. ASME, New York (1992)

    Google Scholar 

  29. Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-element computation of 3D flows. Computer 26 (10), 27–36 (1993)

    Article  MATH  Google Scholar 

  30. Johnson, A.A., Tezduyar, T.E.: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 119, 73–94 (1994)

    Article  MATH  Google Scholar 

  31. Tezduyar, T.E.: Finite element methods for flow problems with moving boundaries and interfaces. Arch. Comput. Methods Eng. 8, 83–130 (2001)

    Article  MATH  Google Scholar 

  32. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid–structure interactions with large displacements. J. Appl. Mech. 70, 58–63 (2003)

    Article  MATH  Google Scholar 

  33. Tezduyar, T.E., Sathe, S.: Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int. J. Numer. Methods Fluids 54, 855–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–75 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tezduyar, T.E., Sathe, S., Stein, K.: Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput. Methods Appl. Mech. Eng. 195, 5743–5753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K.: Space–time finite element techniques for computation of fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 195, 2002–2027 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NAVAIR, Program Manager Dr. Nam Phan, and ARO grant No. W911NF-14-1-0296, Program Manager Dr. Joseph Myers. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hsu, MC., Wang, C., Wu, M.C.H., Xu, F., Bazilevs, Y. (2016). Fluid–Structure Interaction Modeling and Isogeometric Analysis of a Hydraulic Arresting Gear at Full Scale. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_36

Download citation

Publish with us

Policies and ethics