Skip to main content

Particle Method Simulation of Thrombus Formation in Fontan Route

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

A computer simulation was carried out for thrombus formation under the influence of blood flow after Fontan operation. Blood was modeled by computed particles assigned as normal blood or thrombus. Blood flow was calculated using a moving particle semi-implicit method. In a model of blood coagulation that causes thrombi, a normal blood particle changed to a thrombus when its shear rate was lower than a threshold. A spring force was employed to express the coagulation, and was substituted into the NS equations as the external force to couple the coagulation and the blood flow. In simulations, thrombus formation was affected by blood flow behaviors, such as stagnation and recirculation. The atrio-pulmonary connection (APC) square model showed the highest incidence for thrombus formation in the right atrium due to flow stagnation, followed by the APC round, whereas no thrombus was formed in the total cavopulmonary connection model. This result suggests that local hemodynamic behavior associated with the complex channel geometry plays a major role in thrombus formation in the Fontan route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hathcock, J.J.: Flow effects on coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 26, 1729–1737 (2006)

    Article  Google Scholar 

  2. Slack, S.M., Cui, Y., Turitto, V.T.: The effects of flow on blood coagulation and thrombosis. Thromb. Haemost. 70, 129–134 (1993)

    Google Scholar 

  3. Wolberg, A.S., Aleman, M.M., Leiderman, K., Machlus, K.R.: Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth. Analg. 114, 275–285 (2012)

    Article  Google Scholar 

  4. Affeld, K., Reininger, A.J., Gadischke, J., Grunert, K., Schmidt, S., Thiele, F.: Fluid mechanics of the stagnation point flow chamber and its platelet deposition. Artif. Organs. 19, 597–602 (1995)

    Article  Google Scholar 

  5. David, T., Thomas, S., Walker, P.G.: Platelet deposition in stagnation point flow: an analytical and computational simulation. Med. Eng. Phys. 23, 299–312 (2001)

    Article  Google Scholar 

  6. Kaibara, M.: Rheological study on coagulation of blood with special reference to the triggering mechanism of venous thrombus formation. J Biorheol. 23, 2–10 (2009)

    Article  Google Scholar 

  7. Nesbitt, W.S., Westein, E., Tovar-Lopez, F.J., Tolouei, E., Mitchell, A., Fu, J., et al.: A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–675 (2009)

    Article  Google Scholar 

  8. Sorensen, E.N., Burgreen, G.W., Wagner, W.R., Antaki, J.F.: Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27, 449–458 (1999)

    Article  Google Scholar 

  9. Casa, L.D., Deaton, D.H., Ku, D.N.: Role of high shear rate in thrombosis. J. Vasc. Surg. 61, 1068–1080 (2015)

    Article  Google Scholar 

  10. Ruggeri, Z.M., Ware, J.: von Willebrand factor. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 7, 308–316 (1993)

    Google Scholar 

  11. Frescura, C., Thiene, G.: The new concept of univentricular heart. Front. Pediatr. 2, 62 (2014)

    Article  Google Scholar 

  12. Balling, G., Vogt, M., Kaemmerer, H., Eicken, A., Meisner, H., Hess, J.: Intracardiac thrombus formation after the Fontan operation. J. Thorac. Cardiovasc. Surg. 119, 745–752 (2000)

    Article  Google Scholar 

  13. Coon, P.D., Rychik, J., Novello, R.T., Ro, P.S., Gaynor, J.W., Spray, T.L.: Thrombus formation after the Fontan operation. Ann. Thorac. Surg. 71, 1990–1994 (2001)

    Article  Google Scholar 

  14. Hjortdal, V.E., Emmertsen, K., Stenbog, E., Frund, T., Schmidt, M.R., Kromann, O., et al.: Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108, 1227–1231 (2003)

    Article  Google Scholar 

  15. McCrindle, B.W., Manlhiot, C., Cochrane, A., Roberts, R., Hughes, M., Szechtman, B., et al.: Factors associated with thrombotic complications after the Fontan procedure: a secondary analysis of a multicenter, randomized trial of primary thromboprophylaxis for 2 years after the Fontan procedure. J. Am. Coll. Cardiol. 61, 346–353 (2013)

    Article  Google Scholar 

  16. Monagle, P., Cochrane, A., Roberts, R., Manlhiot, C., Weintraub, R., Szechtman, B., et al.: A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as primary thromboprophylaxis for 2 years after the Fontan procedure in children. J. Am. Coll. Cardiol. 58, 645–651 (2011)

    Article  Google Scholar 

  17. Mavroudis, C., Backer, C.L., Deal, B.J., Johnsrude, C., Strasburger, J.: Total cavopulmonary conversion and maze procedure for patients with failure of the Fontan operation. J. Thorac. Cardiovasc. Surg. 122, 863–871 (2001)

    Article  Google Scholar 

  18. Sheikh, A.M., Tang, A.T., Roman, K., Baig, K., Mehta, R., Morgan, J., et al.: The failing Fontan circulation: successful conversion of atriopulmonary connections. J. Thorac. Cardiovasc. Surg. 128, 60–66 (2004)

    Article  Google Scholar 

  19. van Son, J.A., Mohr, F.W., Hambsch, J., Schneider, P., Hess, H., Haas, G.S.: Conversion of atriopulmonary or lateral atrial tunnel cavopulmonary anastomosis to extracardiac conduit Fontan modification. Eur. J. Cardiothorac. Surg. 15, 150–157 (1999). discussion 7–8

    Article  Google Scholar 

  20. Jacobs, M.L., Pourmoghadam, K.K.: Thromboembolism and the role of anticoagulation in the Fontan patient. Pediatr. Cardiol. 28, 457–464 (2007)

    Article  Google Scholar 

  21. Kamada, H., Tsubota, K., Nakamura, M., Wada, S., Ishikawa, T., Yamaguchi, T.: A three-dimensional particle simulation of the formation and collapse of a primary thrombus. Int. J. Numer. Methods Biomed. Eng. 26, 488–500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)

    Google Scholar 

  23. Tsubota, K., Wada, S.: Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 011910 (2010)

    Article  Google Scholar 

  24. Tsubota, K., Wada, S., Yamaguchi, T.: Simulation study on effects of hematocrit on blood flow properties using particle method. J. Biomech. Sci. Eng. 1, 159–170 (2006)

    Article  Google Scholar 

  25. Sughimoto, K., Okauchi, K., Zannino, D., Brizard, C., Liang, F., Sugawara, M., et al.: Cavopulmonary connection is superior to atriopulmonary connection Fontan in preventing thrombus formation: computer simulation of flow-related blood coagulation. Pediatr. Cardiol. 36, 1436–1441 (2015)

    Google Scholar 

  26. Giardini, A., Pace Napoleone, C., Specchia, S., Donti, A., Formigari, R., Oppido, G., et al.: Conversion of atriopulmonary Fontan to extracardiac total cavopulmonary connection improves cardiopulmonary function. Int. J. Cardiol. 113, 341–344 (2006)

    Article  Google Scholar 

  27. Jang, W.S., Kim, W.H., Choi, K., Nam, J., Choi, E.S., Lee, J.R., et al.: The mid-term surgical results of Fontan conversion with antiarrhythmia surgery. Eur. J. Cardiothorac. Surg. 45, 922–927 (2014)

    Article  Google Scholar 

  28. Weinstein, S., Chan, D.: Extracardiac Fontan conversion, cryoablation, and pacemaker placement for patients with a failed Fontan. Semin. Thorac. Cardiovasc. Surg. 17, 170–178 (2005)

    Article  Google Scholar 

  29. Lardo, A.C., Webber, S.A., Friehs, I., del Nido, P.J., Cape, E.G.: Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J. Thorac. Cardiovasc. Surg. 117, 697–704 (1999)

    Article  Google Scholar 

  30. Liang, F., Sughimoto, K., Matsuo, K., Liu, H., Takagi, S.: Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. Int. J. Numer. Methods Biomed. Eng. 30, 1000–1018 (2014)

    Article  Google Scholar 

  31. Hedrick, M., Elkins, R.C., Knott-Craig, C.J., Razook, J.D.: Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature. J. Thorac. Cardiovasc. Surg. 105, 297–301 (1993)

    Google Scholar 

  32. Cheung, Y.F., Chay, G.W., Chiu, C.S., Cheng, L.C.: Long-term anticoagulation therapy and thromboembolic complications after the Fontan procedure. Int. J. Cardiol. 102, 509–513 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly funded by Grants-in-Aid for Scientific Research (15H03915 and 25630046), JSPS. KT was supported by MEXT SPIRE Supercomputational Life Science. KS was supported by the Inohana Alumni Association of the Chiba University of Medicine (12046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tsubota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsubota, Ki., Sughimoto, K., Okauchi, K., Liu, H. (2016). Particle Method Simulation of Thrombus Formation in Fontan Route. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_30

Download citation

Publish with us

Policies and ethics