Skip to main content

A Review on Fast Quasi-Newton and Accelerated Fixed-Point Iterations for Partitioned Fluid–Structure Interaction Simulation

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

The partitioned simulation of fluid–structure interactions offers great flexibility in terms of exchanging flow and structure solver and using existing established codes. However, it often suffers from slow convergence and limited parallel scalability. Quasi-Newton or accelerated fixed-point iterations are a very efficient way to solve the convergence issue. At the same time, they stabilize and speed up not only the standard staggered fluid–structure coupling iterations, but also the variant with simultaneous execution of flow and structure solver that is fairly inefficient if no acceleration methods for the underlying fixed-point iteration are used. In this chapter, we present a review on combinations of iteration patterns (parallel and staggered) and of quasi-Newton methods and compare their suitability in terms of convergence speed, robustness, and parallel scalability. Some of these variants use the so-called manifold mapping that yields an additional speedup by using an approach that can be interpreted as a generalization of the multi-level idea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the update formula for x k+1 also shows that skipping the fixed-point iteration step (computing \(\tilde{x}^{k} = H(x^{k})\)) before using a quasi-Newton step would have led to linearly dependent columns in W k : We then would always correct x k to x k+1 by adding multiples of differences x kx i from previous iterations as we would have to use W k  = (Δ x 0 k, Δ x 1 k, , Δ x k−1 k) with Δ x i k = x kx i in this case. Using induction over the iterations, we see that all columns of W k would be in the space spanned by x 0 and x 1x 0.

  2. 2.

    For the computation of C k F k , we can either use a QR decomposition of F k as we do in our quasi-Newton approaches to compute V k or singular value decompositions of C k and F k as described in [5]

  3. 3.

    http://www5.in.tum.de/wiki/index.php/PreCICE_Webpage

  4. 4.

    http://www.openfoam.org/

References

  1. Barker, A.T., Cai, X.C.: Scalable parallel methods for monolithic coupling in fluid–structure interaction with application to blood flow modeling. J. Comput. Phys. 229 (3), 642–659 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bathe, K.J., Ledezma, G.A.: Benchmark problems for incompressible fluid flows with structural interactions. Comput. Struct. 85 (11–14), 628–644 (2007)

    Article  Google Scholar 

  3. Bazilevs, Y., Korobenko, A., Deng, X., Yan, J., Kinzel, M., Dabiri, J.: Fluid-structure interaction modeling of vertical-axis wind turbines. J. Appl. Mech. 81 (8), 081,006 (2014)

    Article  Google Scholar 

  4. Blom, D.S., van Zuijlen, A.H., Bijl, H.: Acceleration of strongly coupled fluid-structure interaction with manifold mapping. In: Oñate, E., Oliver, X., Huerta, A. (eds.) Proceedings of the 11th World Congress on Computational Mechanics, 5th European Congress on Computational Mechanics, 6th European Congress on Computational Fluid Dynamics, pp. 4484–4495 (2014)

    Google Scholar 

  5. Blom, D.S., Uekermann, B., Mehl, M., van Zuijlen, A., Bijl, H.: Multi-level acceleration of parallel coupled partitioned fluid-structure interaction with manifold mapping. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering - CE 2014. Lecture Notes in Computational Science and Engineering. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  6. Blom, D.S., van Zuijlen, A.H., Bijl, H.: Multi-level acceleration with manifold mapping of strongly coupled partitioned fluid-structure interaction (2015, submitted)

    Google Scholar 

  7. Bogaers, A.E.J., Kok, S., Reddy, B.D., Franz, T.: Quasi-Newton methods for implicit black-box FSI coupling. Comput. Methods Appl. Mech. Eng. 279, 113–132 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bungartz, H.J., Lindner, F., Mehl, M., Uekermann, B.: A plug-and-play coupling approach for parallel multi-field simulations. In: Computational Mechanics, pp. 1–11 (2014). doi:10.1007/s00466-014-1113-2. 10.1007/s00466-014-1113-2

    Google Scholar 

  9. Darwish, M., Sraj, I., Moukalled, F.: A coupled finite volume solver for the solution of incompressible flows on unstructured grids. J. Comput. Phys. 228 (1), 180–201 (2009). doi:10.1016/j.jcp.2008.08.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Degroote, J.: Partitioned simulation of fluid-structure interaction. Arch. Comput. Meth. Eng. 20 (3), 185–238 (2013)

    Article  MathSciNet  Google Scholar 

  11. Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86, 2224–2234 (2008)

    Article  Google Scholar 

  12. Degroote, J., Bathe, K.J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87 (11–12), 793–801 (2009)

    Article  Google Scholar 

  13. Echeverría, D., Hemker, P.W.: Space mapping and defect correction. Comput. Methods Appl. Math. 5 (2), 107–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Echeverría, D., Hemker, P.W.: Manifold mapping: a two-level optimization technique. Comput. Vis. Sci. 11 (4–6), 193–206 (2008). doi:10.1007/s00791-008-0096-y. 10.1007/s00791-008-0096-y

    Google Scholar 

  15. Farhat, C., Lesoinne, M.: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Methods Appl. Mech. Eng. 182 (3–4), 499–515 (2000)

    Article  MATH  Google Scholar 

  16. Felippa, C., Park, K., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190 (24–25), 3247–3270 (2001)

    Article  MATH  Google Scholar 

  17. Fernández, M.Á., Moubachir, M.: A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. Struct. 83 (2–3), 127–142 (2005)

    Article  Google Scholar 

  18. Gatzhammer, B.: Efficient and flexible partitioned simulation of fluid-structure interactions. Dissertation, Institut für Informatik, Technische Universität München, München (2015)

    Google Scholar 

  19. Gee, M., Küttler, U., Wall, W.: Truly monolithic algebraic multigrid for fluid-structure interaction. Int. J. Numer. Methods Eng. 85 (8), 987–1016 (2011). doi:10.1002/nme.3001

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindner, F., Mehl, M., Scheufele, K., Uekermann, B.: A comparison of various quasi-Newton schemes for partitioned fluid-structure interaction. In: Proceedings of 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice, pp. 1–12 (2015)

    Google Scholar 

  21. Marklund, P.O., Nilsson, L.: Simulation of airbag inflation processes using a coupled fluid structure approach. Comput. Mech. 29 (4–5), 289–297 (2002)

    Article  MATH  Google Scholar 

  22. Mehl, M., Uekermann, B., Bijl, H., Blom, D.S., Gatzhammer, B., van Zuijlen, A.H.: Parallel coupling numerics for partitioned fluid-structure interaction simulations. SIAM Sci. Comput. (2013, submitted)

    Google Scholar 

  23. Stein, K., Benney, R., Kalro, V., Tezduyar, T.E., Leonard, J., Accorsi, M.: Parachute fluid-structure interactions: 3-D computation. Comput. Methods Appl. Mech. Eng. 190 (3–4), 373–386 (2000)

    Article  MATH  Google Scholar 

  24. Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K.: Space–time finite element techniques for computation of fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 195 (17), 2002–2027 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Turek, S., Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, H.J., Schäfer, M. (eds.) Fluid-Structure Interaction. Modelling, Simulation, Optimisation, vol. 53, pp. 371–385. Springer, Berlin, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling algorithm for fluid-structure interaction. In: Proceedings of 5th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Ibiza, pp. 1–12 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Mehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blom, D., Lindner, F., Mehl, M., Scheufele, K., Uekermann, B., van Zuijlen, A. (2016). A Review on Fast Quasi-Newton and Accelerated Fixed-Point Iterations for Partitioned Fluid–Structure Interaction Simulation. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_20

Download citation

Publish with us

Policies and ethics