Skip to main content

Role of Astrocytes in Central Respiratory Chemoreception

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Abstract

Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine (Serotonin)

ACh:

Acetylcholine

aCSF:

Artificial cerebrospinal fluid

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ANP:

Atrial natriuretic peptide

ATP:

Adenosine triphosphate

CA:

Carbonic anhydrase enzyme

CCHS:

Central congenital hypoventilation syndrome

CNS:

Central nervous system

CNO:

Clozapine-N-oxide

CO2 :

Carbon dioxide

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione—competitive AMPA/kainate receptor antagonist

cNTS:

Caudal nucleus tractus solitarius

CSF:

Cerebrospinal fluid

cVLM:

Caudal ventrolateral medulla

cVRG:

Caudal ventral respiratory group

Cx:

Connexins

DRC:

Dorsal respiratory columns

EPSP:

Excitatory postsynaptic potentials

GABA:

γ-aminobutyric acid

GFAP:

Glial fibrillary acidic protein

KF:

Pontine Kölliker-Fuse nucleus

KO:

Knock out

LC:

Locus coeruleus

LDT:

Laterodorsal tegmental nucleus

LPBR:

Lateral parabrachial nucleus

LTP:

Long-term potentiation

mRVLM:

Medial portion of the rostral ventrolateral medulla

MS:

Methionine sulfoximine

NK1R:

Neurokinin 1 receptor

NMDA:

N-methyl-D-aspartate

NMDAR:

N-methyl-D-aspartate receptor

NO:

Nitric oxide

NTS:

Nucleus tractus solitarius

PaCO2 :

Partial arterial pressure of carbon dioxide

PCO2 :

Partial pressure of carbon dioxide

PaO2 :

Partial arterial pressure of oxygen

PF-LHA:

Perifornical-lateral hypothalamic area

PNS:

Peripheral nervous system

PPADS:

Pyridoxal-phosphate-6-azophenyl-2=,4=-disulfonate

PPT:

Pedunculopontine tegmental nucleus

preBötC:

PreBötzinger Complex

ORX:

Orexin

ORX-KO:

Prepro-orexin knockout mice

RN:

Medullary raphe nucleus

RPG:

Respiratory pattern generator

RTN/pFRG:

Retrotrapezoid/parafacial respiratory group

RVL:

Nucleus reticularis rostroventrolateralis

RVLM:

Rostral ventrolateral medulla

rVRG:

Rostral ventral respiratory group

SERT:

Serotonin transporter

SIDS:

Sudden infant death syndrome

SP:

Substance P

SSP-SAP:

Saporin–substance P conjugate

TH:

Tyrosine hydroxylase

TIRF:

Total internal reflection fluorescence

TRH:

Thyrotropin releasing hormone

TRP:

Channels Transient receptor potential channels

TS-eEPSCs:

Tractus solitaries-evoked excitatory postsynaptic currents

VLM:

Ventrolateral medullary surface

VMS:

Ventral medullary surface

VRC:

Ventral respiratory columns

VRG:

Ventral respiratory group

References

  • Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG (2009) Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 29(18):5806–5819. doi:10.1523/JNEUROSCI.1106-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott SB, Stornetta RL, Coates MB, Guyenet PG (2011) Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats. J Neurosci 31(45):16410–16422. doi:10.1523/JNEUROSCI.3280-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. doi:10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Accorsi-Mendonca D, Zoccal DB, Bonagamba LG, Machado BH (2013) Glial cells modulate the synaptic transmission of NTS neurons sending projections to ventral medulla of Wistar rats. Physiol Rep 1(4):e00080. doi:10.1002/phy2.80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akilesh MR, Kamper M, Li A, Nattie EE (1997) Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. J Appl Physiol 82(2):469–479

    CAS  PubMed  Google Scholar 

  • Albrecht J, Simmons M, Dutton GR, Norenberg MD (1991) Aluminum chloride stimulates the release of endogenous glutamate, taurine and adenosine from cultured rat cortical astrocytes. Neurosci Lett 127(1):105–107

    Article  CAS  PubMed  Google Scholar 

  • Alexandre C, Andermann ML, Scammell TE (2013) Control of arousal by the orexin neurons. Curr Opin Neurobiol 23(5):752–759. doi:10.1016/j.conb.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33(4):459–461. doi:10.1038/ng1130

    Article  CAS  PubMed  Google Scholar 

  • Amiel J, Dubreuil V, Ramanantsoa N, Fortin G, Gallego J, Brunet JF, Goridis C (2009) PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol 168(1–2):125–132. doi:10.1016/j.resp.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  • Antunes VR, Braga VA, Machado BH (2005) Autonomic and respiratory responses to microinjection of ATP into the intermediate or caudal nucleus tractus solitarius in the working heart-brainstem preparation of the rat. Clin Exp Pharmacol Physiol 32:467–472

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22(7):2443–2450

    CAS  PubMed  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739. doi:10.1016/j.neuron.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DM, Rotler A, Hersh LB, Pickel VM (1988) Localization of choline acetyltransferase in perikarya and dendrites within the nuclei of the solitary tracts. J Neurosci Res 20(3):279–290. doi:10.1002/jnr.490200302

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243. doi:10.1038/nature09613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird NR, Orlowski J, Szabó EZ, Zaun HC, Schultheis PJ, Menon AG, Shull GE (1999) Molecular cloning, genomic organization, and functional expression of Na+/H+ exchanger isoform 5 (NHE5) from human brain. J Biol Chem 274(7):4377–4382

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne D, Scheid P (2001) Central respiratory chemosensitivity: cellular and network mechanisms. Adv Exp Med Biol 499:17–26

    Article  CAS  PubMed  Google Scholar 

  • Ballanyi K, Panaitescu B, Ruangkittisakul A (2010) Control of breathing by “nerve glue”. Sci Signal 3(147):e41. doi:10.1126/scisignal.3147pe41

    Article  CAS  Google Scholar 

  • Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. doi:10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  • Belegu R, Hadziefendic S, Dreshaj IA, Haxhiu MA, Martin RJ (1999) CO2-induced c-fos expression in medullary neurons during early development. Respir Physiol 117(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Ben Achour S, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57(4):440–445. doi:10.1016/j.neuint.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  • Berger AJ, Cooney KA (1982) Ventilatory effects of kainic acid injection of the ventrolateral solitary nucleus. J Appl Physiol 52:131–140

    CAS  PubMed  Google Scholar 

  • Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH (2008) Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch 455(6):1119–1128. doi:10.1007/s00424-007-0338-8

    Article  CAS  PubMed  Google Scholar 

  • Boscan P, Pickering AE, Paton JFR (2002) The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Exp Physiol 87(2):259–266

    Article  PubMed  Google Scholar 

  • Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS (2004) Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol 139(3):237–245. doi:10.1016/j.resp.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  • Boudinot E, Champagnat J, Foutz AS (2008) M(1)/M(3) and M(2)/M(4) muscarinic receptor double-knockout mice present distinct respiratory phenotypes. Respir Physiol Neurobiol 161(1):54–61. doi:10.1016/j.resp.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Brown DA, Collins GG, Galvan M, Marsh S, Yamini G (1976) Indirect effects of amino-acids on sympathetic ganglion cells mediated through the release of gamma-aminobutyric acid from glial cells. Br J Pharmacol 57(1):73–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LG, Paton JF, Machado BH (2007) Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 581(Pt 3):1129–1145. doi:10.1113/jphysiol.2007.129031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes N (1997) Intracellullar pH as a regulatory signal in astrocyte metabolism. Glia 21:64–73

    Article  CAS  PubMed  Google Scholar 

  • Brunet JF, Pattyn A (2002) Phox2 genes—from patterning to connectivity. Curr Opin Genet Dev 12(4):435–440

    Article  CAS  PubMed  Google Scholar 

  • Brust RD, Corcoran AE, Richerson GB, Nattie E, Dymecki SM (2014) Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep 9(6):2152–2165. doi:10.1016/j.celrep.2014.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke PG, Kanbar R, Viar KE, Stornetta RL, Guyenet PG (2015) Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs. J Appl Physiol 118(12):1491–1501. doi:10.1152/japplphysiol.00164.2015 (1985)

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Song G (2007) Purinergic modulation of respiration via medullary raphe nuclei in rats. Respir Physiol Neurobiol 155(2):114–120. doi:10.1016/j.resp.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  • Caravagna C, Soliz J, Seaborn T (2013) Brain-derived neurotrophic factor interacts with astrocytes and neurons to control respiration. Eur J Neurosci 38(9):3261–3269. doi:10.1111/ejn.12320

    Article  PubMed  Google Scholar 

  • Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18(12):4637–4645

    CAS  PubMed  Google Scholar 

  • Chen X, Wang L, Zhou Y, Zheng LH, Zhou Z (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25(40):9236–9243. doi:10.1523/JNEUROSCI.1640-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol 75(1):5–14

    CAS  PubMed  Google Scholar 

  • Coddou C, Bravo E, Eugenin J (2009) Alterations in cholinergic sensitivity of respiratory neurons induced by pre-natal nicotine: a mechanism for respiratory dysfunction in neonatal mice. Philos Trans R Soc Lond 364(1529):2527–2535

    Article  CAS  Google Scholar 

  • Connelly CA, Otto-Smith MR, Feldman JL (1992) Blockade of NMDA receptor-channels by MK-801 alters breathing in adult rats. Brain Res 596(1–2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A (1992) Differential expression of transforming growth factor-beta 1,—beta 2, and—beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148(5):1404–1410

    CAS  PubMed  Google Scholar 

  • Corcoran AE, Richerson GB, Harris MB (2013) Serotonergic mechanisms are necessary for central respiratory chemoresponsiveness in situ. Respir Physiol Neurobiol 186(2):214–220. doi:10.1016/j.resp.2013.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  • Corsini E, Dufour A, Ciusani E, Gelati M, Frigerio S, Gritti A, Cajola L, Mancardi GL, Massa G, Salmaggi A (1996) Human brain endothelial cells and astrocytes produce IL-1 beta but not IL-10. Scand J Immunol 44(5):506–511

    Article  CAS  PubMed  Google Scholar 

  • Cui N, Zhang X, Tapedalli JS, Yu L, Gai H, Petit J, Pamulapati RT, Jin X, Jiang C (2011) Involvement of TRP channels in the CO2 chemosensitivity of locus coeruleus neurons. J Neurophysiol 105:2791–2801. doi:10.1152/jn.00759.2010.-Catecholaminergic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran AK, Darnall RA, Filiano JJ, Li A, Nattie EE (2001) Muscimol dialysis in the rostral ventral medulla reduced the CO(2) response in awake and sleeping piglets. J Appl Physiol 90(3):971–980

    CAS  PubMed  Google Scholar 

  • da Silva GS, Li A, Nattie E (2010) High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke’s area) increases ventilation in wakefulness. Respir Physiol Neurobiol 171(1):46–53. doi:10.1016/j.resp.2010.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva GS, Giusti H, Benedetti M, Dias MB, Gargaglioni LH, Branco LG, Glass ML (2011) Serotonergic neurons in the nucleus raphe obscurus contribute to interaction between central and peripheral ventilatory responses to hypercapnia. Pflugers Arch 462(3):407–418. doi:10.1007/s00424-011-0990-x

    Article  CAS  PubMed  Google Scholar 

  • da Silva GS, Moraes DJ, Giusti H, Dias MB, Glass ML (2012) Purinergic transmission in the rostral but not caudal medullary raphe contributes to the hypercapnia-induced ventilatory response in unanesthetized rats. Respir Physiol Neurobiol 184(1):41–47. doi:10.1016/j.resp.2012.07.015

    Article  PubMed  CAS  Google Scholar 

  • De Paula PM, Antunes VR, Bonagamba LG, Machado BH (2004) Cardiovascular responses to microinjection of ATP into the nucleus tractus solitarii of awake rats. Am J Physiol 287:R1164–R1171. doi:10.1152/ajpregu.00722.2003

    Google Scholar 

  • Dean JB, Bayliss DA, Erickson JT, Lawing WL, Millhorn DE (1990) Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36(1):207–216

    Article  CAS  PubMed  Google Scholar 

  • Deitmer JW, Rose CR (1996) pH regulation and proton signalling by glial cells. Prog Neurobiol 48(2):73–103

    Article  CAS  PubMed  Google Scholar 

  • Deng BS, Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T (2007) Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol 103(5):1772–1779. doi:10.1152/japplphysiol.00075.2007 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Dev NB, Loeschcke HH (1979a) A cholinergic mechanism involved in the respiratory chemosensitivity. Pflügers Arch 379:29–36

    Article  CAS  PubMed  Google Scholar 

  • Dev NB, Loeschcke HH (1979b) Topography of the respiratory and circulatory responses to acetylcholine and nicotine on the ventral surface of the medulla oblongata. Pflügers Arch 379:19–27

    Article  CAS  PubMed  Google Scholar 

  • Dias MB, Nucci TB, Margatho LO, Antunes-Rodrigues J, Gargaglioni LH, Branco LG (2007) Raphe magnus nucleus is involved in ventilatory but not hypothermic response to CO2. J Appl Physiol 103(5):1780–1788

    Article  PubMed  Google Scholar 

  • Dias MB, Li A, Nattie E (2008) Focal CO2 dialysis in raphe obscurus does not stimulate ventilation but enhances the response to focal CO2 dialysis in the retrotrapezoid nucleus. J Appl Physiol 105(1):83–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias MB, Li A, Nattie EE (2009) Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol 587(Pt 9):2059–2067. doi:10.1113/jphysiol.2008.168260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias MB, Li A, Nattie E (2010) The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respir Physiol Neurobiol 170(1):96–102. doi:10.1016/j.resp.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Dreshaj IA, Haxhiu MA, Martin RJ (1998) Role of the medullary raphe nuclei in the respiratory response to CO2. Respir Physiol 111(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil V, Ramanantsoa N, Trochet D, Vaubourg V, Amiel J, Gallego J, Brunet JF, Goridis C (2008) A human mutation in phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci USA 105(3):1069–1072. doi:10.1073/pnas.0709115105

    Article  Google Scholar 

  • Dubreuil V, Barhanin J, Goridis C, Brunet JF (2009a) Breathing with Phox2b. Philos Trans R Soc Lond 364:2477–2483. doi:10.1098/rstb.2009.0085

    Article  CAS  Google Scholar 

  • Dubreuil V, Thoby-Brisson M, Rallu M, Persson K, Pattyn A, Birchmeier C, Brunet JF, Fortin G, Goridis C (2009b) Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 29(47):14836–14846. doi:10.1523/JNEUROSCI.2623-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Dutschmann M, Kron M, Morschel M, Gestreau C (2007) Activation of Orexin B receptors in the pontine Kolliker-Fuse nucleus modulates pre-inspiratory hypoglossal motor activity in rat. Respir Physiol Neurobiol 159(2):232–235

    Article  CAS  PubMed  Google Scholar 

  • Erlichman JS, Leiter JC (2010) Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. J Appl Physiol 108:1803–1811. doi:10.1152/japplphysiol.01321.2009.-We

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlichman JS, Li A, Nattie EE (1998) Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol 85(5):1599–1604

    CAS  PubMed  Google Scholar 

  • Erlichman JS, Leiter JC, Gourine AV (2010) ATP, glia and central respiratory control. Respir Physiol Neurobiol 173(3):305–311. doi:10.1016/j.resp.2010.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin J (1995) Generation of the respiratory rhythm: modelling the inspiratory off switch as a neural integrator. J Theor Biol 172(2):107–120

    Article  CAS  PubMed  Google Scholar 

  • Eugenin J, Nicholls JG (1997) Chemosensory and cholinergic stimulation of fictive respiration in isolated CNS of neonatal opossum. J Physiol (London) 501(Pt 2):425–437

    Article  CAS  Google Scholar 

  • Eugenin J, von Bernhardi R, Muller KJ, Llona I (2006) Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro. Neuroscience 141(1):223–231

    Article  CAS  PubMed  Google Scholar 

  • Eugenin J, Otarola M, Bravo E, Coddou C, Cerpa V, Reyes-Parada M, Llona I, von Bernhardi R (2008) Prenatal to early postnatal nicotine exposure impairs central chemoreception and modifies breathing pattern in mouse neonates: a probable link to sudden infant death syndrome. J Neurosci 28(51):13907–13917

    Article  CAS  PubMed  Google Scholar 

  • Eyzaguirre C, Fitzgerald RS, Lahiri S, Zapata P (1983) Arterial chemoreceptors. In: Shepherd JT, Abboud FM (eds) American physiological society: handbook of physiology, vol 3., The Cardiovascular SystemWilliams & Wilkins Co., Baltimore, Maryland, pp 557–621

    Google Scholar 

  • Feldman JL (1986) Neurophysiology of breathing in mammals. In: Bloom FE (ed) Handbook of physiology, vol IV. Williams & Wilkins Co., Bethesda, Maryland, pp 463–524

    Google Scholar 

  • Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26:239–266. doi:10.1146/annurev.neuro.26.041002.131103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54(7):676–690. doi:10.1002/glia.20396

    Article  PubMed  Google Scholar 

  • Fukuda Y, Honda Y (1975) pH sensitive cells at ventrolateral surface of the rat medulla oblongata. Nat New Biol 256:317–318

    Article  CAS  Google Scholar 

  • Fukuda Y, Honda Y, Schlaefke ME, Loeschcke HH (1978) Effect of H+ on the membrane potential of silent cells in the ventral and dorsal surface layer of the rat medulla in vitro. Pflügers Arch 376:229–235

    Article  CAS  PubMed  Google Scholar 

  • Funk GD (2010) The ‘connexin’ between astrocytes, ATP and central respiratory chemoreception. J Physiol 588(Pt 22):4335–4337. doi:10.1113/jphysiol.2010.200196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk GD, Johnson SM, Smith JC, Dong X-W, Lai J, Feldman JL (1997) Functional respiratory rhythm generating networks in neonatal mice lacking NMDAR1 gene. J Neurophysiol 78:1414–1420

    CAS  PubMed  Google Scholar 

  • Furukawa S, Furukawa Y, Satoyoshi E, Hayashi K (1986) Synthesis and secretion of nerve growth factor by mouse astroglial cells in culture. Biochem Biophys Res Commun 136(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Gahring LC, Persiyanov K, Rogers SW (2004) Neuronal and astrocyte expression of nicotinic receptor subunit beta4 in the adult mouse brain. J Comp Neurol 468(3):322–333. doi:10.1002/cne.10942

    Article  CAS  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Seregi A, Schobert A, Hertting G (1988) Involvement of protein kinase C in prostaglandin D(2) synthesis by cultured astrocytes. Neurochem Int 13(4):475–480

    Article  CAS  PubMed  Google Scholar 

  • Goridis C, Dubreuil V, Thoby-Brisson M, Fortin G, Brunet JF (2010) Phox2b, congenital central hypoventilation syndrome and the control of respiration. Sem Cell Dev Biol 21(8):814–822. doi:10.1016/j.semcdb.2010.07.006

    Article  CAS  Google Scholar 

  • Gotts J, Atkinson L, Edwards IJ, Yanagawa Y, Deuchars SA, Deuchars J (2015) Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata. Auton Neurosci. doi:10.1016/j.autneu.2015.05.003

    PubMed  PubMed Central  Google Scholar 

  • Gourine AV, Kasparov S (2011) Astrocytes as brain interoceptors. Exp Physiol 96(4):411–416. doi:10.1113/expphysiol.2010.053165

    Article  CAS  PubMed  Google Scholar 

  • Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436(7047):108–111. doi:10.1038/nature03690

    Article  CAS  PubMed  Google Scholar 

  • Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575. doi:10.1126/science.1190721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass D, Pawlowski PG, Hirrlinger J, Papadopoulos N, Richter DW, Kirchhoff F, Hulsmann S (2004) Diversity of functional astroglial properties in the respiratory network. J Neurosci 24(6):1358–1365. doi:10.1523/JNEUROSCI.4022-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, Ross SE, Hirata T, Corbin JG, Eugenin J, Del Negro CA (2010) Developmental origin of preBotzinger complex respiratory neurons. J Neurosci 30(44):14883–14895. doi:10.1523/JNEUROSCI.4031-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer JJ, Smith JC, Feldman JL (1991) Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J Physiol 437:727–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guček A, Vardjan N, Zorec R (2012) Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 37(11):2351–2363. doi:10.1007/s11064-012-0773-6

    Article  PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528

    CAS  PubMed  Google Scholar 

  • Guyenet PG, Mulkey DK (2010) Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol 173(3):244–255. doi:10.1016/j.resp.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyenet PG, Mulkey DK, Stornetta RL, Bayliss DA (2005) Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J Neurosci 25(39):8938–8947

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355. doi:10.1146/annurev-physiol-021909-135843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev 11(4):227–238. doi:10.1038/nrn2803

    Article  CAS  Google Scholar 

  • Hartel K, Schnell C, Hulsmann S (2009) Astrocytic calcium signals induced by neuromodulators via functional metabotropic receptors in the ventral respiratory group of neonatal mice. Glia 57(8):815–827. doi:10.1002/glia.20808

    Article  PubMed  Google Scholar 

  • Hartung HP, Toyka KV (1987) Phorbol diester TPA elicits prostaglandin E release from cultured rat astrocytes. Brain Res 417(2):347–349

    Article  CAS  PubMed  Google Scholar 

  • Hartung HP, Heininger K, Schafer B, Toyka KV (1988) Substance P stimulates release of arachidonic acid cyclooxygenation products from primary culture rat astrocytes. Ann N Y Acad Sci 540:427–429

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031. doi:10.1152/physrev.00049.2005

    Article  CAS  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463(7278):232–236. doi:10.1038/nature08673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004) Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279(42):44065–44073. doi:10.1074/jbc.M405985200

    Article  CAS  PubMed  Google Scholar 

  • Hirata Y, Oku Y (2010) TRP channels are involved in mediating hypercapnic Ca2+ responses in rat glia-rich medullary cultures independent of extracellular pH. Cell Calcium 48(2–3):124–132. doi:10.1016/j.ceca.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Klum L, Leekley T, Brozoski DT, Bastasic J, Davis S, Wenninger JM, Feroah TR, Pan LG, Forster HV (2004a) Effects on breathing in awake and sleeping goats of focal acidosis in the medullary raphe. J Appl Physiol 96(5):1815–1824. doi:10.1152/japplphysiol.00992.2003 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Opansky C, Qian B, Davis S, Bonis J, Bastasic J, Leekley T, Pan LG, Forster HV (2004b) Transient attenuation of CO2 sensitivity after neurotoxic lesions in the medullary raphe area of awake goats. J Appl Physiol 97(6):2236–2247

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN, Deneris ES, Johnson RL, Chen ZF, Richerson GB (2008) Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 28(10):2495–2505

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Best S, Richerson GB (2011) Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice. Respir Physiol Neurobiol 177(2):133–140. doi:10.1016/j.resp.2011.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holleran J, Babbie M, Erlichman JS (2001) Ventilatory effects of impaired glial function in a brainstem chemoreceptor region in the conscious rat. J Appl Physiol 90:1539–1547

    CAS  PubMed  Google Scholar 

  • Hosli E, Hosli L (1994a) Binding of cholecystokinin, bombesin and muscarine to neurons and astrocytes in explant cultures of rat central nervous system: autoradiographic and immunohistochemical studies. Neuroscience 61(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Hosli E, Hosli L (1994b) Colocalization of binding sites for somatostatin, muscarine and nicotine on cultured neurones of rat neocortex, cerebellum, brain stem and spinal cord: combined autoradiographic and immunohistochemical studies. Neurosci Lett 173(1–2):71–74

    Article  CAS  PubMed  Google Scholar 

  • Hosli L, Hosli E, Della-Briotta G, Quadri L, Heuss L (1988) Action of acetylcholine, muscarine, nicotine and antagonists on the membrane potential of astrocytes in cultured rat brainstem and spinal cord. Neurosci Lett 92(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Hosli L, Hosli E, Winter T, Stauffer S (1994) Coexistence of cholinergic and somatostatin receptors on astrocytes of rat CNS. NeuroReport 5(12):1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Huckstepp RT, Eason R, Sachdev A, Dale N (2010a) CO2-dependent opening of connexin 26 and related beta connexins. J Physiol 588(Pt 20):3921–3931. doi:10.1113/jphysiol.2010.192096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckstepp RT, id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV, Dale N (2010b) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588(Pt 20):3901–3920. doi:10.1113/jphysiol.2010.192088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huda R, McCrimmon DR, Martina M (2013) pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol 110:368–377. doi:10.1152/jn.01074.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulsmann S (2000) Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medulary slices of neonatal mouse. Eur J Neurosci 12:7

    Google Scholar 

  • Hulsmann S, Straub H, Richter DW, Speckmann EJ (2003) Blockade of astrocyte metabolism causes delayed excitation as revealed by voltage-sensitive dyes in mouse brainstem slices. Exp Brain Res 150(1):117–121. doi:10.1007/s00221-003-1410-z

    PubMed  Google Scholar 

  • Huxtable AG, Zwicker JD, Alvares TS, Ruangkittisakul A, Fang X, Hahn LB, Posse de Chaves E, Baker GB, Ballanyi K, Funk GD (2010) Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J Neurosci 30(11):3947–3958. doi:10.1523/JNEUROSCI.6027-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10(11):1369–1376. doi:10.1038/nn2003

    Article  CAS  PubMed  Google Scholar 

  • Iceman KE, Richerson GB, Harris MB (2013) Medullary serotonin neurons are CO2 sensitive in situ. J Neurophysiol 110(11):2536–2544. doi:10.1152/jn.00288.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante CD, von Bernhardi R, Rovegno M, Llona I, Eugenin JL (2003) Respiratory responses to pH in the absence of pontine and dorsal medullary areas in the newborn mouse in vitro. Brain Res 984(1–2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Kadle R, Suksang C, Roberson ED, Fellows RE (1988) Identification of an insulin-like factor in astrocyte conditioned medium. Brain Res 460(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Kanbar R, Stornetta RL, Cash DR, Lewis SJ, Guyenet PG (2010) Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am J Respir Crit Care Med 182(9):1184–1194. doi:10.1164/rccm.201001-0047OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BJ, Chang DA, Mackay DD, West GH, Moreira TS, Takakura AC, Gwilt JM, Guyenet PG, Stornetta RL (2007) Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 503(5):627–641. doi:10.1002/cne.21409

    Article  CAS  PubMed  Google Scholar 

  • Kasymov V, Larina O, Castaldo C, Marina N, Patrushev M, Kasparov S, Gourine AV (2013) Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J Neurosci 33(2):435–441. doi:10.1523/JNEUROSCI.2813-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10(5):1583–1591

    CAS  PubMed  Google Scholar 

  • Kinney HC, Filiano JJ, Sleeper LA, Mandell F, Valdes-Dapena M, White WF (1995) Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 269(5229):1446–1450

    Article  CAS  PubMed  Google Scholar 

  • Krause KL, Forster HV, Davis SE, Kiner T, Bonis JM, Pan LG, Qian B (2009) Focal acidosis in the pre-Botzinger complex area of awake goats induces a mild tachypnea. J Appl Physiol 106(1):241–250. doi:10.1152/japplphysiol.90547.2008 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon PG, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23(5):1580–1583

    CAS  PubMed  Google Scholar 

  • Kuwaki T, Li A, Nattie E (2010) State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol 173(3):223–229. doi:10.1016/j.resp.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25(28):6716–6720. doi:10.1523/JNEUROSCI.1887-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Li A, Nattie EE (1995) Prolonged stimulation of respiration by brain stem metabotropic glutamate receptors. J Appl Physiol 79(5):1650–1656

    CAS  PubMed  Google Scholar 

  • Li A, Nattie E (2002) CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat. Respir Physiol Neurobiol 133(1–2):11–22

    Article  PubMed  Google Scholar 

  • Li A, Nattie E (2008) Serotonin transporter knockout mice have a reduced ventilatory response to hypercapnia (predominantly in males) but not to hypoxia. J Physiol 586(9):2321–2329. doi:10.1113/jphysiol.2008.152231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Nattie E (2010) Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle. J Physiol 588(Pt 15):2935–2944. doi:10.1113/jphysiol.2010.191288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Randall M, Nattie EE (1999) CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. J Appl Physiol 87(3):910–919

    CAS  PubMed  Google Scholar 

  • Li A, Zhou S, Nattie E (2006) Simultaneous inhibition of caudal medullary raphe and retrotrapezoid nucleus decreases breathing and the CO2 response in conscious rats. J Physiol 577(Pt 1):307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Li A, Nattie E (2013) Focal microdialysis of CO(2) in the perifornical-hypothalamic area increases ventilation during wakefulness but not NREM sleep. Respir Physiol Neurobiol 185(2):349–355. doi:10.1016/j.resp.2012.09.007

    Article  PubMed  Google Scholar 

  • Loeschcke HH (1982) Central chemosensitivity and the reaction theory. J Physiol 332:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorier AR, Huxtable AG, Robinson DM, Lipski J, Housley GD, Funk GD (2007) P2Y1 receptor modulation of the pre-Botzinger complex inspiratory rhythm generating network in vitro. J Neurosci 27(5):993–1005. doi:10.1523/JNEUROSCI.3948-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Makara JK, Petheö GL, Tóth A, Spät A (2001) pH-sensitive inwardly rectifying chloride current in cultured rat cortical astrocytes. Glia 34:52–58

    Article  CAS  PubMed  Google Scholar 

  • Mallios VJ, Lydic R, Baghdoyan HA (1995) Muscarinic receptor subtypes are differentially distributed across brain stem respiratory nuclei. Am J Physiol 268:L941–L949

    CAS  PubMed  Google Scholar 

  • Marina N, Abdala AP, Trapp S, Li A, Nattie EE, Hewinson J, Smith JC, Paton JF, Gourine AV (2010) Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration. J Neurosci 30(37):12466–12473. doi:10.1523/JNEUROSCI.3141-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martino PF, Davis S, Opansky C, Krause K, Bonis JM, Pan LG, Qian B, Forster HV (2007) The cerebellar fastigial nucleus contributes to CO2-H+ ventilatory sensitivity in awake goats. Respir Physiol Neurobiol 157(2–3):242–251. doi:10.1016/j.resp.2007.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N (2013) CO(2)directly modulates connexin 26 by formation of carbamate bridges between subunits. Elife 2:e01213. doi:10.7554/eLife.01213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercure L, Tannenbaum GS, Schipper HM, Phaneuf D, Wainberg MA (1996) Expression of the somatostatin gene in human astrocytoma cell lines. Clin Diagn Lab Immunol 3(2):151–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messier ML, Li A, Nattie EE (2002) Muscimol inhibition of medullary raphe neurons decreases the CO2 response and alters sleep in newborn piglets. Respir Physiol Neurobiol 133(3):197–214

    Article  CAS  PubMed  Google Scholar 

  • Messier ML, Li A, Nattie EE (2004) Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. J Appl Physiol 96(5):1909–1919

    Article  PubMed  Google Scholar 

  • Mitchell RA, Loeschcke HH, Massion WH, Severinghaus JW (1963) Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol 18(3):523–533

    CAS  Google Scholar 

  • Monteau R, Morin D, Hilaire G (1990) Acetylcholine and central chemosensitivity: in vitro study in the newborn rat. Respir Physiol 81:241–254

    Article  CAS  PubMed  Google Scholar 

  • Morgado-Valle C, Feldman JL (2007) NMDA receptors in preBotzinger complex neurons can drive respiratory rhythm independent of AMPA receptors. J Physiol 582(Pt 1):359–368. doi:10.1113/jphysiol.2007.130617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7(12):1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Mulkey DK, Mistry AM, Guyenet PG, Bayliss DA (2006) Purinergic P2 receptors modulate excitability but do not mediate pH sensitivity of RTN respiratory chemoreceptors. J Neurosci 26(27):7230–7233. doi:10.1523/JNEUROSCI.1696-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Murphy S, Minor RL Jr, Welk G, Harrison DG (1990) Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric oxide. J Neurochem 55(1):349–351

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T (2007) Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol 102(1):241–248. doi:10.1152/japplphysiol.00679.2006 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Nattie E (1999) CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59(4):299–331

    Article  CAS  PubMed  Google Scholar 

  • Nattie EE (2001) Central chemosensitivity, sleep, and wakefulness. Respir Physiol 129(1–2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Nattie E (2011) Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then … and now. J Appl Physiol 110(1):1–8. doi:10.1152/japplphysiol.01061.2010

    Article  CAS  PubMed  Google Scholar 

  • Nattie E, Li A (1990) Ventral medulla sites of muscarinic receptor subtypes involved in cardiorespiratory control. J Appl Physiol 69(1):33–41

    CAS  PubMed  Google Scholar 

  • Nattie EE, Li A (1994) Retrotrapezoid nucleus lesions decrease phrenic activity and CO2 sensitivity in rats. Respir Physiol 97(1):63–77

    Article  CAS  PubMed  Google Scholar 

  • Nattie EE, Li A (1995) Rat retrotrapezoid nucleus iono- and metabotropic glutamate receptors and the control of breathing. J Appl Physiol 78(1):153–163

    CAS  PubMed  Google Scholar 

  • Nattie E, Li A (2000) Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat. J Appl Physiol 89(1):153–162

    CAS  PubMed  Google Scholar 

  • Nattie EE, Li A (2001) CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol 90(4):1247–1257

    CAS  PubMed  Google Scholar 

  • Nattie EE, Li A (2002a) CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. J Appl Physiol 92(5):2119–2130

    Article  PubMed  Google Scholar 

  • Nattie EE, Li A (2002b) Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity. J Physiol 544(Pt 2):603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nattie E, Li A (2006) Central chemoreception 2005: a brief review. Auton Neurosci 126–127:332–338

    Article  PubMed  CAS  Google Scholar 

  • Nattie G, Li A (2008) Multiple central chemoreceptor sites: cell types and function in vivo. Adv Exp Med Biol 605:343–347

    Article  PubMed  Google Scholar 

  • Nattie E, Li A (2009) Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol 106(4):1464–1466. doi:10.1152/japplphysiol.00112.2008

    Article  CAS  PubMed  Google Scholar 

  • Nattie E, Li A (2010) Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol 108(5):1417–1424. doi:10.1152/japplphysiol.01261.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nattie E, Li A (2012) Central chemoreceptors: locations and functions. Compr Physiol 2(1):221–254. doi:10.1002/cphy.c100083

    PubMed  PubMed Central  Google Scholar 

  • Nattie EE, Wood J, Mega A, Goritski W (1989) Rostral ventrolateral medulla muscarinic receptor involvement in central ventilatory chemosensitivity. J Appl Physiol 66(3):1462–1470

    CAS  PubMed  Google Scholar 

  • Nattie EE, Fung ML, Li A, St John WM (1993a) Responses of respiratory modulated and tonic units in the retrotrapezoid nucleus to CO2. Respir Physiol 94(1):35–50

    Article  CAS  PubMed  Google Scholar 

  • Nattie EE, Gdovin M, Li A (1993b) Retrotrapezoid nucleus glutamate receptors: control of CO2-sensitive phrenic and sympathetic output. J Appl Physiol 74(6):2958–2968

    CAS  PubMed  Google Scholar 

  • Nattie EE, Li A, Mills J, Huang Q (1994) Retrotrapezoid nucleus muscarinic receptor subtypes localized by autoradiography. Respir Physiol 96(2–3):189–197

    Article  CAS  PubMed  Google Scholar 

  • Nattie EE, Li A, Richerson GB, Lappi DA (2004) Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. J Physiol 556(Pt 1):235–253. doi:10.1113/jphysiol.2003.059766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neusch C, Papadopoulos N, Muller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bahr M, Richter DW, Kirchhoff F, Hulsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95(3):1843–1852. doi:10.1152/jn.00996.2005

    Article  CAS  PubMed  Google Scholar 

  • Newton K, Malik V, Lee-Chiong T (2014) Sleep and breathing. Clin Chest Med 35(3):451–456. doi:10.1016/j.ccm.2014.06.001

    Article  PubMed  Google Scholar 

  • Nichols NL, Wilkinson KA, Powell FL, Dean JB, Putnam RW (2009) Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats. Respir Physiol Neurobiol 168(3):272–280. doi:10.1016/j.resp.2009.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287. doi:10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. doi:10.1007/978-1-61779-452-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno K, Sakurai T (2008) Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 29(1):70–87. doi:10.1016/j.yfrne.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2006) Point:Counterpoint: The parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal. Point: the PFRG is the primary site of respiratory rhythm generation in the mammal. J Appl Physiol 100(6):2094–2095

    Article  PubMed  Google Scholar 

  • Onimaru H, Kumagawa Y, Homma I (2006) Respiration-related rhythmic activity in the rostral medulla of newborn rats. J Neurophysiol 96(1):55–61

    Article  PubMed  Google Scholar 

  • Onimaru H, Ikeda K, Kawakami K (2008) CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci 28(48):12845–12850. doi:10.1523/JNEUROSCI.3625-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Ikeda K, Kawakami K (2009) Phox2b, RTN/pFRG neurons and respiratory rhythmogenesis. Respir Physiol Neurobiol 168(1–2):13–18. doi:10.1016/j.resp.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  • Oyamada Y, Ballantyne D, Muckenhoff K, Scheid P (1998) Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol (London) 513(Pt 2):381–398

    Article  CAS  Google Scholar 

  • Paixao S, Klein R (2010) Neuron-astrocyte communication and synaptic plasticity. Curr Opin Neurobiol 20(4):466–473. doi:10.1016/j.conb.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi:10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  • Paterson DS, Thompson EG, Kinney HC (2006) Serotonergic and glutamatergic neurons at the ventral medullary surface of the human infant: Observations relevant to central chemosensitivity in early human life. Auton Neurosci 124(1–2):112–124. doi:10.1016/j.autneu.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399(6734):366–370. doi:10.1038/20700

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262. doi:10.1002/glia.20528

    Article  PubMed  Google Scholar 

  • Perea G, Araque A (2010) GLIA modulates synaptic transmission. Brain Res Rev 63(1–2):93–102. doi:10.1016/j.brainresrev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378. doi:10.3389/fncel.2014.00378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramanantsoa N, Hirsch MR, Thoby-Brisson M, Dubreuil V, Bouvier J, Ruffault PL, Matrot B, Fortin G, Brunet JF, Gallego J, Goridis C (2011) Breathing without CO2 chemosensitivity in conditional Phox2b mutants. J Neurosci 31(36):12880–12888. doi:10.1523/JNEUROSCI.1721-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333(6042):637–642. doi:10.1126/science.1205295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray RS, Corcoran AE, Brust RD, Soriano LP, Nattie EE, Dymecki SM (2013) Egr2-neurons control the adult respiratory response to hypercapnia. Brain Res 1511:115–125. doi:10.1016/j.brainres.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  • Richerson GB (1995) Response to CO2 of neurons in the rostral ventral medulla in vitro. J Neurophysiol 73(3):933–944

    CAS  PubMed  Google Scholar 

  • Richter DW, Spyer KM (2001) Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci 24(8):464–472

    Article  CAS  PubMed  Google Scholar 

  • Richter DW, Camerer H, Sonnhof U (1978) Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurones. Pflugers Arch 376(2):139–149

    Article  CAS  PubMed  Google Scholar 

  • Ritucci NA, Erlichman JS, Leiter JC, Putnam RW (2005) Response of membrane potential and intracellular pH to hypercapnia in neurons and astrocytes from rat retrotrapezoid nucleus. Am J Physiol 289:R851–R861. doi:10.1152/ajpregu.00132.2005.-We

    Article  CAS  Google Scholar 

  • Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2015) Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience. doi:10.1016/j.neuroscience.2015.01.007

    PubMed  Google Scholar 

  • Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H (2010) Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. FASEB J 24(8):2951–2961. doi:10.1096/fj.09-147967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero DA, Giuliano R, Anwar M, Stornetta R, Reis DJ (1990) Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol 292(1):1–53. doi:10.1002/cne.902920102

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2014) The role of orexin in motivated behaviours. Nat Rev 15(11):719–731. doi:10.1038/nrn3837

    Article  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92(9):3948–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt BM, Berger UV, Douglas RM, Bevensee MO, Hediger MA, Haddad GG, Boron WF (2000) Na/HCO3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus. J Neurosci 20(18):6839–6848

    CAS  PubMed  Google Scholar 

  • Schnell C, Fresemann J, Hulsmann S (2011) Determinants of functional coupling between astrocytes and respiratory neurons in the pre-Botzinger complex. PLoS One 6(10):e26309. doi:10.1371/journal.pone.0026309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmaj KW, Farooq M, Norton WT, Raine CS, Brosnan CF (1990) Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J Immunol 144(1):129–135

    CAS  PubMed  Google Scholar 

  • Shao XM, Feldman JL (2005) Cholinergic neurotransmission in the preBotzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Neuroscience 130(4):1069–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao XM, Feldman JL (2009) Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol Sin 30(6):761–770. doi:10.1038/aps.2009.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao XM, Tan W, Xiu J, Puskar N, Fonck C, Lester HA, Feldman JL (2008) Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J Neurosci 28(2):519–528. doi:10.1523/JNEUROSCI.3666-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinoda H, Marini AM, Cosi C, Schwartz JP (1989) Brain region and gene specificity of neuropeptide gene expression in cultured astrocytes. Science 245(4916):415–417

    Article  CAS  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39(1):115–123. doi:10.1177/0192623310385254

    Article  PubMed  Google Scholar 

  • Smith JC, Ellenberger H, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032):726–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrinho CR, Wenker IC, Poss EM, Takakura AC, Moreira TS, Mulkey DK (2014) Purinergic signalling contributes to chemoreception in the retrotrapezoid nucleus but not the nucleus of the solitary tract or medullary raphe. J Physiol 592(Pt 6):1309–1323. doi:10.1113/jphysiol.2013.268490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon IC (2003) Focal CO2/H+ alters phrenic motor output response to chemical stimulation of cat pre-Botzinger complex in vivo. J Appl Physiol 94(6):2151–2157

    Article  PubMed  Google Scholar 

  • Solomon IC, Edelman NH, O’Neal MH 3rd (2000) CO(2)/H(+) chemoreception in the cat pre-Botzinger complex in vivo. J Appl Physiol 88(6):1996–2007

    CAS  PubMed  Google Scholar 

  • Spyer KM, Dale N, Gourine AV (2004) ATP is a key mediator of central and peripheral chemosensory transduction. Exp Physiol 89(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Stipursky J, Romao L, Tortelli V, Neto VM, Gomes FC (2011) Neuron-glia signaling: Implications for astrocyte differentiation and synapse formation. Life Sci 89(15–16):524–531. doi:10.1016/j.lfs.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2006) Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26(40):10305–10314. doi:10.1523/JNEUROSCI.2917-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL, Macon CJ, Nguyen TM, Coates MB, Guyenet PG (2013) Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 218(2):455–475. doi:10.1007/s00429-012-0408-3

    Article  PubMed  Google Scholar 

  • Sunanaga J, Deng BS, Zhang W, Kanmura Y, Kuwaki T (2009) CO2 activates orexin-containing neurons in mice. Respir Physiol Neurobiol 166(3):184–186. doi:10.1016/j.resp.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664(1–2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Szoke K, Hartel K, Grass D, Hirrlinger PG, Hirrlinger J, Hulsmann S (2006) Glycine transporter 1 expression in the ventral respiratory group is restricted to protoplasmic astrocytes. Brain Res 1119(1):182–189. doi:10.1016/j.brainres.2006.08.089

    Article  CAS  PubMed  Google Scholar 

  • Takakura AC, Moreira TS, Stornetta RL, West GH, Gwilt JM, Guyenet PG (2008) Selective lesion of retrotrapezoid Phox2b-expressing neurons raises the apnoeic threshold in rats. J Physiol 586(Pt 12):2975–2991. doi:10.1113/jphysiol.2008.153163 jphysiol.2008.153163[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takakura AC, Barna BF, Cruz JC, Colombari E, Moreira TS (2014) Phox2b-expressing retrotrapezoid neurons and the integration of central and peripheral chemosensory control of breathing in conscious rats. Exp Physiol 99(3):571–585. doi:10.1113/expphysiol.2013.076752

    Article  CAS  PubMed  Google Scholar 

  • Tatehata T, Shiosaka S, Wanaka A, Rao ZR, Tohyama M (1987) Immunocytochemical localization of the choline acetyltransferase containing neuron system in the rat lower brain stem. J Hirnforsch 28(6):707–716

    CAS  PubMed  Google Scholar 

  • Taylor NC, Li A, Nattie EE (2006) Ventilatory effects of muscimol microdialysis into the rostral medullary raphe region of conscious rats. Respir Physiol Neurobiol 153(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Teppema LJ, Veening JG, Kranenburg A, Dahan A, Berkenbosch A, Olievier C (1997) Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol 388(2):169–190

    Article  CAS  PubMed  Google Scholar 

  • Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y, Kuwaki T (2008) Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol 104(2):499–507. doi:10.1152/japplphysiol.00919.2007 (1985)

    Article  PubMed  Google Scholar 

  • Thomas T, Spyer KM (2000) ATP as a mediator of mammalian central CO2 chemoreception. J Physiol (London) 523(Pt 2):441–447

    Article  CAS  Google Scholar 

  • Toyama S, Sakurai T, Tatsumi K, Kuwaki T (2009) Attenuated phrenic long-term facilitation in orexin neuron-ablated mice. Respir Physiol Neurobiol 168(3):295–302. doi:10.1016/j.resp.2009.07.025

    Article  CAS  PubMed  Google Scholar 

  • Turovsky E, Karagiannis A, Abdala AP, Gourine AV (2015) Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome. J Physiol 593(14):3159–3168. doi:10.1113/JP270369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Euler C (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Cherniack NS, Widdicombe JG (eds) American physiological society: handbook of physiology, vol 2., control of breathingWilliams & Wilkins Co., Baltimore, Maryland, pp 1–68

    Google Scholar 

  • Wang W, Richerson GB (1999) Development of chemosensitivity of rat medullary raphe neurons. Neuroscience 90(3):1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Pizzonia JH, Richerson GB (1998) Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol (London) 511(Pt 2):433–450

    Article  CAS  Google Scholar 

  • Wang S, Shi Y, Shu S, Guyenet PG, Bayliss DA (2013) Phox2b-expressing retrotrapezoid neurons are intrinsically responsive to H+ and CO2. J Neurosci 33(18):7756–7761. doi:10.1523/JNEUROSCI.5550-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenker IC, Kreneisz O, Nishiyama A, Mulkey DK (2010) Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1–Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J Neurophysiol 104(6):3042–3052. doi:10.1152/jn.00544.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenker IC, Sobrinho CR, Takakura AC, Moreira TS, Mulkey DK (2012) Regulation of ventral surface CO2/H+ -sensitive neurons by purinergic signalling. J Physiol 590(Pt 9):2137–2150. doi:10.1113/jphysiol.2012.229666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westergaard N, Sonnewald U, Schousboe A (1994) Release of alpha-ketoglutarate, malate and succinate from cultured astrocytes: possible role in amino acid neurotransmitter homeostasis. Neurosci Lett 176(1):105–109

    Article  CAS  PubMed  Google Scholar 

  • Wickstrom R, Hokfelt T, Lagercrantz H (2002) Development of CO(2)-response in the early newborn period in rat. Respir Physiol Neurobiol 132(2):145–158

    Article  PubMed  Google Scholar 

  • Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D (2007) Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci USA 104(25):10685–10690. doi:10.1073/pnas.0702676104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta. doi:10.1016/j.bbapap.2011.01.001

    PubMed  Google Scholar 

  • Wu J, Xu H, Shen W, Jiang C (2004) Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J Membrane Biol 197:179–191. doi:10.1007/s00232-004-0652-4

    Article  CAS  Google Scholar 

  • Wu Z, Zhang J, Nakanishi H (2005) Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation. J Neuroimmunol 167(1–2):90–98. doi:10.1016/j.jneuroim.2005.06.025

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Frazier DT (1995) Medullary respiratory neuronal activity modulated by stimulation of the fastigial nucleus of the cerebellum. Brain Res 705(1–2):53–64

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Zhang Z, Frazier DT (2001) Microinjection of acetazolamide into the fastigial nucleus augments respiratory output in the rat. J Appl Physiol 91(5):2342–2350

    CAS  PubMed  Google Scholar 

  • Xu G, Wang W, Kimelberg HK, Zhou M (2010) Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 58(4):481–493. doi:10.1002/glia.20939

    PubMed  Google Scholar 

  • Yao ST, Barden JA, Finkelstein DI, Bennett MR, Lawrence AJ (2000) Comparative study on the distribution patterns of P2X1-P2X6 receptor immunoreactivity in the brainstem of the rat and the common marmoset (Callithrix jacchus): association with catecholamine cell groups. J Comp Neurol 427:485–507

    Article  CAS  PubMed  Google Scholar 

  • Young JK, Dreshaj IA, Wilson CG, Martin RJ, Zaidi SI, Haxhiu MA (2005a) An astrocyte toxin influences the pattern of breathing and the ventilatory response to hypercapnia in neonatal rats. Respir Physiol Neurobiol 147(1):19–30. doi:10.1016/j.resp.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  • Young JK, Wu M, Manaye KF, Kc P, Allard JS, Mack SO, Haxhiu MA (2005b) Orexin stimulates breathing via medullary and spinal pathways. J Appl Physiol 98(4):1387–1395. doi:10.1152/japplphysiol.00914.2004 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Pleasure D, Stern J (1994) Inhibition of astrocyte glutamine production by alpha-ketoisocaproic acid. J Neurochem 63(4):1508–1515

    Article  CAS  PubMed  Google Scholar 

  • Zwicker JD, Rajani V, Hahn LB, Funk GD (2011) Purinergic modulation of preBotzinger complex inspiratory rhythm in rodents: the interaction between ATP and adenosine. J Physiol 589(Pt 18):4583–4600. doi:10.1113/jphysiol.2011.210930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support from Grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) #1130874 (JE), Comisión Nacional de Ciencia y Tecnología (CONICYT) #21140669 (MJ Olivares), Comisión Nacional de Ciencia y Tecnología (CONICYT) #21120594 (S Beltrán-Castillo). DICYT-USACH (JE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Eugenín León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eugenín León, J., Olivares, M.J., Beltrán-Castillo, S. (2016). Role of Astrocytes in Central Respiratory Chemoreception. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_6

Download citation

Publish with us

Policies and ethics