Skip to main content

NG2-glia, More Than Progenitor Cells

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 949))

Abstract

NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types. Additionally, we will give some further insights into the properties that these cells have, like the ability to form synapses with neurons and their plastic behavior triggered by neuronal activity, suggesting that they may play a role specifically in myelin and more generally in brain plasticity. Finally, we will briefly review their behavior in disease models suggesting that their function is extended to repair the brain after insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid protein β

AD:

Alzheimer’s disease

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPAR:

AMPA receptor

Ascl1:

Achaete-scute homolog 1

αScTX:

Α-scorpion toxin

BrdU:

5-bromo-2′-deoxyuridine

Cavs:

Voltage-gated calcium channels

CC1:

Adenomatous polyposis coli

CNS:

Central nervous system

DNQX:

6,7-dinitroquinoxaline-2,3-dione

EAE:

Experimental autoimmune encephalomyelitis

EdU:

5-ethynyl-2′-deoxyuridine

EPSC:

Excitatory postsynaptic current

GABAAR:

γ-aminobutyric acid receptor

GPR17:

G-protein coupled receptor 17

Kvs:

Voltage-gated potassium channels

LPC:

α-lysophosphatidylcholine

Mash1:

Mammalian achaete-scute homolog 1

MBP:

Myelin basic protein

MCAO:

Middle cerebral artery occlusion

mEPSC:

Miniature EPSC

MS:

Multiple sclerosis

Navs:

Voltage-gated sodium channels

NBQX:

2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline

NG2:

Neuron/glia antigen 2

NMDAR:

N-methyl-d-aspartate receptor

OPCs:

Oligodendrocyte progenitor cells

PDGF:

Platelet-derived growth factor

PDGFR:

PDGF receptor α

PFC:

Prefrontral cortex

PLP:

Proteolipid protein

PNS:

Peripheral nervous system

PSD-95:

Postsynaptic density protein 95

TeNT:

Tetanus neurotoxin

TTX:

Tetrodotoxin

References

  • Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361(6409):258–260. doi:10.1038/361258a0

    Article  CAS  PubMed  Google Scholar 

  • Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Gotz M, Dimou L (2013) Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61(2):273–286. doi:10.1002/glia.22432

    Article  PubMed  Google Scholar 

  • Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150. doi:10.1038/nn1516

    Article  CAS  PubMed  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405(6783):187–191. doi:10.1038/35012083

    Article  CAS  PubMed  Google Scholar 

  • Birey F, Aguirre A (2015) Age-dependent Netrin-1 signaling regulates NG2+ glial cell spatial homeostasis in normal adult gray matter. J Neurosci 35(17):6946–6951. doi:10.1523/JNEUROSCI.0356-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boda E, Vigano F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A (2011) The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 59(12):1958–1973. doi:10.1002/glia.21237

    Article  PubMed  Google Scholar 

  • Bu J, Banki A, Wu Q, Nishiyama A (2004) Increased NG2(+) glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer. Glia 48(1):51–63. doi:10.1002/glia.20055

    Article  PubMed  Google Scholar 

  • Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, Hoang J, Escobar SS, Gow A, Arnett HA, Trapp BD, Karandikar NJ, Hsieh J, Lu QR (2009) The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 12(11):1398–1406. doi:10.1038/nn.2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke LE, Young KM, Hamilton NB, Li H, Richardson WD, Attwell D (2012) Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci 32(24):8173–8185. doi:10.1523/JNEUROSCI.0928-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AD, Weatherby TM, Hartline DK, Lenz PH (1999) Myelin-like sheaths in copepod axons. Nature 398(6728):571. doi:10.1038/19212

    Article  CAS  PubMed  Google Scholar 

  • Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488

    Article  CAS  PubMed  Google Scholar 

  • De Angelis F, Bernardo A, Magnaghi V, Minghetti L, Tata AM (2012) Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Dev Neurobiol 72(5):713–728. doi:10.1002/dneu.20976

    Article  PubMed  Google Scholar 

  • De Biase LM, Nishiyama A, Bergles DE (2010) Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci 30(10):3600–3611. doi:10.1523/JNEUROSCI.6000-09.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93(18):9887–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Bello IC, Dawson MR, Levine JM, Reynolds R (1999) Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J Neurocytol 28(4–5):365–381

    Article  PubMed  Google Scholar 

  • Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63(8):1429–1451. doi:10.1002/glia.22859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimou L, Götz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94(3):709–737. doi:10.1152/physrev.00036.2013

    Article  CAS  PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442. doi:10.1523/JNEUROSCI.2831-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Dzamba D, Honsa P, Anderova M (2013) NMDA receptors in glial cells: pending questions. Curr Neuropharmacol 11(3):250–262. doi:10.2174/1570159X11311030002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehninger D, Wang LP, Klempin F, Romer B, Kettenmann H, Kempermann G (2011) Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res 345(1):69–86. doi:10.1007/s00441-011-1200-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290(5495):1364–1368

    CAS  PubMed  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. doi:10.1038/nrn2480

    Article  CAS  PubMed  Google Scholar 

  • Garay L, Tungler V, Deniselle MC, Lima A, Roig P, De Nicola AF (2011) Progesterone attenuates demyelination and microglial reaction in the lysolecithin-injured spinal cord. Neuroscience 192:588–597. doi:10.1016/j.neuroscience.2011.06.065

    Article  CAS  PubMed  Google Scholar 

  • Gary DS, Malone M, Capestany P, Houdayer T, McDonald JW (2012) Electrical stimulation promotes the survival of oligodendrocytes in mixed cortical cultures. J Neurosci Res 90(1):72–83. doi:10.1002/jnr.22717

    Article  CAS  PubMed  Google Scholar 

  • Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304. doi:10.1126/science.1252304

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci 30(36):12036–12049. doi:10.1523/JNEUROSCI.1360-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RA, Patel KD, Medved J, Reiss AM, Nishiyama A (2013) NG2 cells in white matter but not gray matter proliferate in response to PDGF. J Neurosci 33(36):14558–14566. doi:10.1523/JNEUROSCI.2001-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A (2014) Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17(11):1518–1527. doi:10.1038/nn.3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18(5):683–689. doi:10.1038/nn.3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676. doi:10.1038/nn.3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681. doi:10.1016/j.neuron.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karadottir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11(4):450–456. doi:10.1038/nn2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22(2):161–170

    Article  CAS  PubMed  Google Scholar 

  • Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9(12):1506–1511. doi:10.1038/nn1803

    Article  CAS  PubMed  Google Scholar 

  • Lasiene J, Matsui A, Sawa Y, Wong F, Horner PJ (2009) Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8(2):201–213. doi:10.1111/j.1474-9726.2009.00462.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP (2008) The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS ONE 3(10):e3579. doi:10.1371/journal.pone.0003579

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Brus-Ramer M, Martin JH, McDonald JW (2010) Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett 479(2):128–133. doi:10.1016/j.neulet.2010.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, Ke ZJ (2013) Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener 8:27. doi:10.1186/1750-1326-8-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P (2012) Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15(12):1621–1623. doi:10.1038/nn.3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PH, Lee GJ, Raven EP, Tingus K, Khoo T, Thompson PM, Bartzokis G (2011) Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample. J Clin Exp Neuropsychol 33(10):1059–1068. doi:10.1080/13803395.2011.595397

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu PH, Lee GJ, Tishler TA, Meghpara M, Thompson PM, Bartzokis G (2013) Myelin breakdown mediates age-related slowing in cognitive processing speed in healthy elderly men. Brain Cogn 81(1):131–138. doi:10.1016/j.bandc.2012.09.006

    Article  PubMed  Google Scholar 

  • Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HO, Franklin RJ, Charles F-C, Attwell D, Karadottir RT (2013) Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 11(12):e1001743. doi:10.1371/journal.pbio.1001743

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangin JM, Li P, Scafidi J, Gallo V (2012) Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat Neurosci 15(9):1192–1194. doi:10.1038/nn.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrs GS, Green SH, Dailey ME (2001) Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci 4(10):1006–1013. doi:10.1038/nn717

    Article  CAS  PubMed  Google Scholar 

  • Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18(5):628–630. doi:10.1038/nn.3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RH (1996) Oligodendrocyte origins. Trends Neurosci 19(3):92–96

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. doi:10.1146/annurev-cellbio-100913-013101

    Article  CAS  PubMed  Google Scholar 

  • Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227. doi:10.1002/dvdy.1200

    Article  CAS  PubMed  Google Scholar 

  • Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, Guillemot F (2007) The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 27(16):4233–4242. doi:10.1523/JNEUROSCI.0126-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31(8–9):581–593

    Article  PubMed  Google Scholar 

  • Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5(3–4):57–67. doi:10.1017/S1740925X09990354

    Article  PubMed  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303(5916):390–396

    Article  CAS  PubMed  Google Scholar 

  • Robins SC, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, Bourque CW, Kokoeva MV (2013) Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE 8(10):e78236. doi:10.1371/journal.pone.0078236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakry D, Karram K, Trotter J (2011) Synapses between NG2 glia and neurons. J Anat 219(1):2–7. doi:10.1111/j.1469-7580.2011.01359.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371. doi:10.1038/nn.2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59(6):869–881. doi:10.1002/glia.21156

    Article  PubMed  Google Scholar 

  • Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Gotz M (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog [corrected]. Cell Stem Cell 12(4):426–439. doi:10.1016/j.stem.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36(5):855–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturrock RR (1976) Changes in neurologia and myelination in the white matter of aging mice. J Gerontol 31(5):513–522

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32(2–3):380–412

    Article  CAS  PubMed  Google Scholar 

  • Vigano F, Dimou L (2016) The heterogeneous nature of NG2-glia. Brain Res. doi:10.1016/j.brainres.2015.09.012

    PubMed  Google Scholar 

  • Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16(10):1370–1372. doi:10.1038/nn.3503

    Article  CAS  PubMed  Google Scholar 

  • Vigano F, Schneider S, Cimino M, Bonfanti E, Gelosa P, Sironi L, Abbracchio MP, Dimou L (2016) GPR17 expressing NG2-Glia: Oligodendrocyte progenitors serving as a reserve pool after injury. Glia 64(2):287–299. doi:10.1002/glia.22929

    Article  PubMed  Google Scholar 

  • Von Blankenfeld G, Trotter J, Kettenmann H (1991) Expression and developmental regulation of a GABAA receptor in cultured murine cells of the oligodendrocyte lineage. Eur J Neurosci 3(4):310–316

    Article  Google Scholar 

  • Williamson AV, Mellor JR, Grant AL, Randall AD (1998) Properties of GABA(A) receptors in cultured rat oligodendrocyte progenitor cells. Neuropharmacology 37(7):859–873

    Article  CAS  PubMed  Google Scholar 

  • Wilson HC, Scolding NJ, Raine CS (2006) Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J Neuroimmunol 176(1–2):162–173. doi:10.1016/j.jneuroim.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  • Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565. doi:10.1016/j.stem.2008.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Miller RH, Ransohoff RM, Robinson S, Bu J, Nishiyama A (2000) Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J Neurosci 20(7):2609–2617

    CAS  PubMed  Google Scholar 

  • Yuan X, Eisen AM, McBain CJ, Gallo V (1998) A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125(15):2901–2914

    CAS  PubMed  Google Scholar 

  • Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157. doi:10.1242/dev.004895

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753. doi:10.1242/dev.047951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10(3):321–330. doi:10.1038/nn1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime Eugenín-von Bernhardi or Leda Dimou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eugenín-von Bernhardi, J., Dimou, L. (2016). NG2-glia, More Than Progenitor Cells. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_2

Download citation

Publish with us

Policies and ethics