Microglia in Cancer: For Good or for Bad?

  • Anna Carolina Carvalho da Fonseca
  • Rackele Amaral
  • Celina Garcia
  • Luiz Henrique Geraldo
  • Diana Matias
  • Flavia Regina Souza LimaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)


Glioblastoma is a malignant tumor of astrocytic origin that is highly invasive, proliferative and angiogenic. Despite current advances in multimodal therapies, such as surgery, radio- and chemotherapy, the outcome for patients with glioblastoma is nearly always fatal. The glioblastoma microenvironment has a tremendous influence over the tumor growth and spread. Microglia and macrophages are abundant cells in the tumor mass. Increasing evidence indicates that glioblastoma recruits these cell populations and signals in a way that microglia and macrophages are subverted to promote tumor progression. In this chapter, we discuss some aspects of the interaction between microglia and glioblastoma, consequences of this interaction for tumor progression and the possibility of microglial cells being used as therapeutic vectors, which opens up new alternatives for the development of GBM therapies targeting microglia.


Microglia Glioblastoma Central nervous system Therapy 

Abbreviations and Acronyms


Central nervous system




Tumor necrosis factor




Matrix metalloproteinase


Vascular endothelial growth factor


Delta-like ligand 4


Nitric oxide

MCP-1 (CCL2)

Macrophage chemoattractant protein 1


CCL2 receptor


TNF receptor 1


Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha


Nuclear factor of kappa light polypeptide gene enhancer in B-cells


Urokinase-type plasminogen activator


Stress-inducible protein 1


Heat shock protein


Microglial conditioned medium


Myeloid Differentiation Primary Response 88/Toll-like receptor 8


Toll-like receptor


Membrane-type-1 MMP


Glial cell-line-derived neurotrophic factor


GDNF receptor


Epidermal growth factor receptor


Epidermal growth factor

poly [I:C]

Polyinosinic-polycytidylic acid


TNF-related apoptosis inducing ligand


Mammalian target of rapamycin


Inducible nitric oxide synthase


Macrophage migration inhibitory factor


Signal transducer and activator of transcription


Receptor for Advanced Glycation End products


S100 calcium binding protein B


Oligodeoxynucleotides containing CpG motifs


Tumor necrosis factor receptor of mouse embryo


Glioma stem cell


Magnetic resonance imaging




  1. Albesiano E, Han JE, Lim M (2010) Mechanisms of local immunoresistance in glioma. Neurosurg Clin N Am 21(1):17–29. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  2. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2(10):734–744. doi: 10.1038/35094583 CrossRefPubMedGoogle Scholar
  3. Alves TR, Lima FR, Kahn SA, Lobo D, Dubois LG, Soletti R, Borges H, Neto VM (2011) Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 89(15–16):532–539. doi: 10.1016/j.lfs.2011.04.022 CrossRefPubMedGoogle Scholar
  4. Auf G, Carpentier AF, Chen L, Le Clanche C, Delattre JY (2001) Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides without antigen. Clin Cancer Res 7(11):3540–3543PubMedGoogle Scholar
  5. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46(4):957–961; discussion 961–952Google Scholar
  6. Baker BJ, Qin H, Benveniste EN (2008) Molecular basis of oncostatin M-induced SOCS-3 expression in astrocytes. Glia 56(11):1250–1262. doi: 10.1002/glia.20694 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848. doi: 10.1158/0008-5472.CAN-06-1010 CrossRefPubMedGoogle Scholar
  8. Brada M, Stenning S, Gabe R, Thompson LC, Levy D, Rampling R, Erridge S, Saran F, Gattamaneni R, Hopkins K, Beall S, Collins VP, Lee SM (2010) Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma. J Clin Oncol 28(30):4601–4608CrossRefPubMedGoogle Scholar
  9. Bromberg J, Wang TC (2009) Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 15(2):79–80CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burrows FJ, Gore M, Smiley WR, Kanemitsu MY, Jolly DJ, Read SB, Nicholas T, Kruse CA (2002) Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther 9(1):87–95CrossRefPubMedGoogle Scholar
  11. Carpentier AF, Xie J, Mokhtari K, Delattre JY (2000) Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 6(6):2469–2473PubMedGoogle Scholar
  12. Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A, Martin-Duverneuil N, Sanson M, Lacomblez L, Taillibert S, Puybasset L, Van Effenterre R, Delattre JY, Carpentier AF (2006) Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol 8(1):60–66CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrié M, Meng Y, Richard M, Parizot C, Laigle-Donadey F, Gorochov G, Psimaras D, Sanson M, Tibi A, Chinot O, Carpentier AF (2010) Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol 12(4):401–408CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann JL, Klatzmann D (1993) Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 90(15):7024–7028CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carvalho da Fonseca AC, Wang H, Fan H, Chen X, Zhang I, Zhang L, Lima FR, Badie B (2014) Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J Neuroimmunol 274(1–2):71–77. doi: 10.1016/j.jneuroim.2014.06.021 CrossRefPubMedGoogle Scholar
  16. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59(8):1169–1180. doi: 10.1002/glia.21136 CrossRefPubMedGoogle Scholar
  17. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273(52):35194–35200CrossRefPubMedGoogle Scholar
  18. Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schoenberger SP, Yu H, Jove R, Sotomayor EM (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19(3):425–436CrossRefPubMedGoogle Scholar
  19. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722CrossRefPubMedGoogle Scholar
  20. Chiu TL, Peng CW, Wang MJ (2011) Enhanced anti-glioblastoma activity of microglia by AAV2-mediated IL-12 through TRAIL and phagocytosis in vitro. Oncol Rep 25(5):1373–1380. doi: 10.3892/or.2011.1213 CrossRefPubMedGoogle Scholar
  21. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527. doi: 10.2119/molmed.2011.00217 CrossRefPubMedPubMedCentralGoogle Scholar
  22. da Fonseca AC, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013:264124. doi: 10.1155/2013/264124 PubMedGoogle Scholar
  23. D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102. doi: 10.1523/JNEUROSCI.3567-08.2009 CrossRefPubMedGoogle Scholar
  24. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535CrossRefPubMedGoogle Scholar
  25. Faria J, Romao L, Martins S, Alves T, Mendes FA, de Faria GP, Hollanda R, Takiya C, Chimelli L, Morandi V, de Souza JM, Abreu JG, Moura Neto V (2006) Interactive properties of human glioblastoma cells with brain neurons in culture and neuronal modulation of glial laminin organization. Differentiation 74(9–10):562–572. doi: 10.1111/j.1432-0436.2006.00090.x CrossRefPubMedGoogle Scholar
  26. Fonseca AC, Romao L, Amaral RF, Assad Kahn S, Lobo D, Martins S, Marcondes de Souza J, Moura-Neto V, Lima FR (2012) Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience 200:130–141. doi: 10.1016/j.neuroscience.2011.10.025 CrossRefPubMedGoogle Scholar
  27. Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B (2011) Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS ONE 6(8):e23902. doi: 10.1371/journal.pone.0023902 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gagliano N, Costa F, Cossetti C, Pettinari L, Bassi R, Chiriva-Internati M, Cobos E, Gioia M, Pluchino S (2009) Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol Rep 22(6):1349–1356CrossRefPubMedGoogle Scholar
  29. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi: 10.1126/science.1194637 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Herrera M, Herrera A, Dominguez G, Silva J, Garcia V, Garcia JM, Gomez I, Soldevilla B, Munoz C, Provencio M, Campos-Martin Y, Garcia de Herreros A, Casal I, Bonilla F, Pena C (2013) Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci 104(4):437–444. doi: 10.1111/cas.12096 CrossRefPubMedGoogle Scholar
  31. Hu F, Ku MC, Markovic D, Od AD, Lehnardt S, Synowitz M, Wolf SA, Kettenmann H (2014) Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. Int J Cancer 135 (11):2569–2578. doi: 10.1002/ijc.28908 Google Scholar
  32. Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, Priebe W, Heimberger AB (2007) A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67(20):9630–9636CrossRefPubMedGoogle Scholar
  33. Hwang SY, Yoo BC, Jung JW, Oh ES, Hwang JS, Shin JA, Kim SY, Cha SH, Han IO (2009) Induction of glioma apoptosis by microglia-secreted molecules: the role of nitric oxide and cathepsin B. Biochim Biophys Acta 1793(11):1656–1668. doi: 10.1016/j.bbamcr.2009.08.011 CrossRefPubMedGoogle Scholar
  34. Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, Kondo S, Priebe W, Kondo Y (2007) A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26(17):2435–2444CrossRefPubMedGoogle Scholar
  35. Jacobs VL, Landry RP, Liu Y, Romero-Sandoval EA, De Leo JA (2012a) Propentofylline decreases tumor growth in a rodent model of glioblastoma multiforme by a direct mechanism on microglia. Neuro Oncol 14(2):119–131CrossRefPubMedGoogle Scholar
  36. Jacobs VL, Liu Y, De Leo JA (2012b) Propentofylline targets TROY, a novel microglial signaling pathway. PLoS ONE 7(5):e37955CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kees T, Lohr J, Noack J, Mora R, Gdynia G, Todt G, Ernst A, Radlwimmer B, Falk CS, Herold-Mende C, Regnier-Vigouroux A (2012) Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol 14(1):64–78. doi: 10.1093/neuonc/nor182 CrossRefPubMedGoogle Scholar
  38. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4(4):249–258CrossRefPubMedGoogle Scholar
  39. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24. doi: 10.1002/path.2370 CrossRefPubMedGoogle Scholar
  40. Kren L, Muckova K, Lzicarova E, Sova M, Vybihal V, Svoboda T, Fadrus P, Smrcka M, Slaby O, Lakomy R, Vanhara P, Krenova Z, Michalek J (2010) Production of immune-modulatory nonclassical molecules HLA-G and HLA-E by tumor infiltrating ameboid microglia/macrophages in glioblastomas: a role in innate immunity? J Neuroimmunol 220(1–2):131–135. doi: 10.1016/j.jneuroim.2010.01.014 CrossRefPubMedGoogle Scholar
  41. Krieg AM (2004) Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep 6(2):88–95CrossRefPubMedGoogle Scholar
  42. Ku MC, Wolf SA, Respondek D, Matyash V, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Synowitz M, Glass R, Kettenmann H (2013) GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol 125(4):609–620. doi: 10.1007/s00401-013-1079-8 CrossRefPubMedGoogle Scholar
  43. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169(5):2253–2263CrossRefPubMedGoogle Scholar
  44. Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG, Rewcastle B, Yong VW (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23(10):4034–4043PubMedGoogle Scholar
  45. Li W, Graeber MB (2012) The molecular profile of microglia under the influence of glioma. Neuro Oncol 14(8):958–978. doi: 10.1093/neuonc/nos116 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M, Biswas S, Turley H, Heikamp E, Hainfellner JA, Harris AL (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253. doi: 10.1158/0008-5472.CAN-07-0969 CrossRefPubMedGoogle Scholar
  47. Li R, Li G, Deng L, Liu Q, Dai J, Shen J, Zhang J (2010) IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep 23(6):1553–1559PubMedGoogle Scholar
  48. Lima FRS, da Fonseca ACC, Faria GP, Dubois LGF, Alves TR, Faria J, Moura Neto V (2010) The origin of microglia and the development of the brain. In: Ulrich H (ed) Perspectives of stem cells: from tools for studying mechanisms of neuronal differentiation towards therapy. Springer, Netherlands. doi: 10.1007/978-90-481-3375-8_12 Google Scholar
  49. Lima FR, Kahn SA, Soletti RC, Biasoli D, Alves T, da Fonseca AC, Garcia C, Romao L, Brito J, Holanda-Afonso R, Faria J, Borges H, Moura-Neto V (2012) Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta 1826(2):338–349. doi: 10.1016/j.bbcan.2012.05.004 PubMedGoogle Scholar
  50. Lisi L, Laudati E, Navarra P, Dello Russo C (2014) The mTOR kinase inhibitors polarize glioma-activated microglia to express a M1 phenotype. J Neuroinflammation 11:125. doi: 10.1186/1742-2094-11-125 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mallat M, Marin-Teva JL, Cheret C (2005) Phagocytosis in the developing CNS: more than clearing the corpses. Curr Opin Neurobiol 15(1):101–107. doi: 10.1016/j.conb.2005.01.006 CrossRefPubMedGoogle Scholar
  52. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64(9):754–762CrossRefPubMedGoogle Scholar
  53. Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H (2011) Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25(4):5CrossRefGoogle Scholar
  54. Meng Y, Carpentier AF, Chen L, Boisserie G, Simon JM, Mazeron JJ, Delattre JY (2005) Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 116(6):992–997CrossRefPubMedGoogle Scholar
  55. Nadeau S, Rivest S (2000) Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor κ B activity in the brain during endotoxemia. J Neurosci 20(9):3456–3468PubMedGoogle Scholar
  56. Ng WH, Wan GQ, Peng ZN, Too HP (2009) Glial cell-line derived neurotrophic factor (GDNF) family of ligands confer chemoresistance in a ligand-specific fashion in malignant gliomas. J Clin Neurosci 16(3):427–436. doi: 10.1016/j.jocn.2008.06.002 CrossRefPubMedGoogle Scholar
  57. Nolte C, Kirchhoff F, Kettenmann H (1997) Epidermal growth factor is a motility factor for microglial cells in vitro: evidence for EGF receptor expression. Eur J Neurosci 9(8):1690–1698CrossRefPubMedGoogle Scholar
  58. O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat-3-dependent and -independent pathways. EMBO J 17(4):1006–1018CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453. doi: 10.2353/ajpath.2007.070011 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Penfield W (1925) Microglia and the process of phagocytosis in gliomas. Am J Pathol 1(1):77–90PubMedPubMedCentralGoogle Scholar
  61. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54(3):388–392. doi: 10.1002/ana.10679 CrossRefPubMedGoogle Scholar
  62. Prat E, Baron P, Meda L, Scarpini E, Galimberti D, Ardolino G, Catania A, Scarlato G (2000) The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with beta-amyloid protein. Neurosci Lett 283(3):177–180CrossRefPubMedGoogle Scholar
  63. Qiao J, Black ME, Caruso M (2000) Enhanced ganciclovir killing and bystander effect of human tumor cells transduced with a retroviral vector carrying a herpes simplex virus thymidine kinase gene mutant. Hum Gene Ther 11(11):1569–1576CrossRefPubMedGoogle Scholar
  64. Raychaudhuri B, Han Y, Lu T, Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype. J Neurooncol 85(1):39–47. doi: 10.1007/s11060-007-9390-7 CrossRefPubMedGoogle Scholar
  65. Ribes S, Ebert S, Regen T, Agarwal A, Tauber SC, Czesnik D, Spreer A, Bunkowski S, Eiffert H, Hanisch UK, Hammerschmidt S, Nau R (2010) Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated streptococcus pneumoniae by murine microglia. Infect Immun 78(2):865–871CrossRefPubMedGoogle Scholar
  66. Ribot E, Bouzier-Sore AK, Bouchaud V, Miraux S, Delville MH, Franconi JM, Voisin P (2007) Microglia used as vehicles for both inducible thymidine kinase gene therapy and MRI contrast agents for glioma therapy. Cancer Gene Ther 14(8):724–737CrossRefPubMedGoogle Scholar
  67. Ribot EJ, Miraux S, Konsman JP, Bouchaud V, Pourtau L, Delville MH, Franconi JM, Thiaudière E, Voisin PJ (2011) In vivo MR tracking of therapeutic microglia to a human glioma model. NMR Biomed 24(10):1361–1368CrossRefPubMedGoogle Scholar
  68. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439. doi: 10.1038/nri2565 CrossRefPubMedGoogle Scholar
  69. Rodero M, Marie Y, Coudert M, Blondet E, Mokhtari K, Rousseau A, Raoul W, Carpentier C, Sennlaub F, Deterre P, Delattre JY, Debré P, Sanson M, Combadière C (2008) Polymorphism in the microglial cell-mobilizing CX3CR1 gene is associated with survival in patients withglioblastoma. J Clin Oncol 26(36):5957–5964CrossRefPubMedGoogle Scholar
  70. Rolhion C, Penault-Llorca F, Kemeny JL, Lemaire JJ, Jullien C, Labit-Bouvier C, Finat-Duclos F, Verrelle P (2001) Interleukin-6 overexpression as a marker of malignancy in human gliomas. J Neurosurg 94(1):97–101. doi: 10.3171/jns.2001.94.1.0097 CrossRefPubMedGoogle Scholar
  71. Sangar V, Funk CC, Kusebauch U, Campbell DS, Moritz RL, Price ND (2014) Quantitative proteomic analysis reveals effects of EGFR on invasion-promoting proteins secreted by glioblastoma cells. Mol Cell Proteomics 13(10):2618–2631. doi: 10.1074/mcp.M114.040428 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30(9):10CrossRefGoogle Scholar
  73. Sarkar S, Döring A, Zemp FJ, Silva C, Lun X, Wang X, Kelly J, Hader W, Hamilton M, Mercier P, Dunn JF, Kinniburgh D, van Rooijen N, Robbins S, Forsyth P, Cairncross G, Weiss S, Yong VW (2014) Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 17(1):46–55CrossRefPubMedGoogle Scholar
  74. Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B (2005) Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51(4):279–285. doi: 10.1002/glia.20201 CrossRefPubMedGoogle Scholar
  75. Schmieder A, Michel J, Schonhaar K, Goerdt S, Schledzewski K (2012) Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 22(4):289–297. doi: 10.1016/j.semcancer.2012.02.002 CrossRefPubMedGoogle Scholar
  76. Si QS, Nakamura Y, Schubert P, Rudolphi K, Kataoka K (1996) Adenosine and propentofylline inhibit the proliferation of cultured microglial cells. Exp Neurol 137(2):345–349CrossRefPubMedGoogle Scholar
  77. Si Q, Nakamura Y, Ogata T, Kataoka K, Schubert P (1998) Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res 812(1–2):97–104CrossRefPubMedGoogle Scholar
  78. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355. doi: 10.1016/j.semcancer.2008.03.004 CrossRefPubMedGoogle Scholar
  79. Song Y, Masison DC (2005) Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 280(40):34178–34185. doi: 10.1074/jbc.M505420200 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Spencer DM (2000) Developments in suicide genes for preclinical and clinical applications. Curr Opin Mol Ther 2(4):433–440PubMedGoogle Scholar
  81. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352 (10):987–996Google Scholar
  82. Suk K (2004) Minocycline suppresses hypoxic activation of rodent microglia in culture. Neurosci Lett 366(2):167–171CrossRefPubMedGoogle Scholar
  83. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Förster I, Akira S (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10(1):39–49CrossRefPubMedGoogle Scholar
  84. Tchoghandjian A, Jennewein C, Eckhardt I, Rajalingam K, Fulda S (2013) Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells. Cell Death Dis 4:e564. doi: 10.1038/cddis.2013.70 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tsunoda K, Kitange G, Anda T, Shabani HK, Kaminogo M, Shibata S, Nagata I (2005) Expression of the constitutively activated RelA/NF-κB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion. Brain Tumor Pathol 22(2):79–87. doi: 10.1007/s10014-005-0186-1 CrossRefPubMedGoogle Scholar
  86. Ursu R, Carpentier A, Metellus P, Barrie M, Meng Y, Laigle-Donadey F, Tibi A, Chinot O, Carpentier AF (2009) Phase II trial of intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma. J Clin Oncol 27:15SCrossRefGoogle Scholar
  87. Vilhardt F (2005) Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 37(1):17–21. doi: 10.1016/j.biocel.2004.06.010 CrossRefPubMedGoogle Scholar
  88. Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Lehnardt S, Hanisch UK, Synowitz M, Markovic D, Wolf SA, Glass R, Kettenmann H (2013) Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro Oncol 15(11):1457–1468. doi: 10.1093/neuonc/not115 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Walker PR, Calzascia T, de Tribolet N, Dietrich PY (2003) T-cell immune responses in the brain and their relevance for cerebral malignancies. Brain Res Brain Res Rev 42(2):97–122CrossRefPubMedGoogle Scholar
  90. Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, Eyler CE, Elderbroom J, Gallagher J, Schuschu J, MacSwords J, Cao Y, McLendon RE, Wang XF, Hjelmeland AB, Rich JN (2009) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27(10):2393–2404. doi: 10.1002/stem.188 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA, Aguzzi A, Weis J (2004) IL-6 is required for glioma development in a mouse model. Oncogene 23(19):3308–3316CrossRefPubMedGoogle Scholar
  92. Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H, Humpel C (2000) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-alpha 1) are strongly expressed in human gliomas. Acta Neuropathol 99(2):131–137CrossRefPubMedGoogle Scholar
  93. Wu Y, Zhou BP (2010) TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644. doi: 10.1038/sj.bjc.6605530 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17(1):6–10. doi: 10.1016/j.jocn.2009.05.006 CrossRefPubMedGoogle Scholar
  95. Yao Y, Tsirka SE (2014) Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci 71(4):683–697. doi: 10.1007/s00018-013-1459-1 CrossRefPubMedGoogle Scholar
  96. Yi D, Hua TX, Lin HY, Kui CL, Ning LX, Wang ZZ (2011) Antitumor treatment efficacy by targeting epidermal growth factor receptor and vascular endothelial growth factor receptor-2 in an orthotopic human glioblastoma model. J Neurooncol 104(1):93–101. doi: 10.1007/s11060-010-0479-z CrossRefPubMedGoogle Scholar
  97. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51CrossRefPubMedGoogle Scholar
  98. Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L, Braczynski AK, Weissenberger J, Bratzke H, Reiss S, Pennarz S, Winkelmann R, Senft C, Plate KH, Wischhusen J, Stenzel W, Harter PN, Mittelbronn M (2014) MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu, and prolonged patient survival in gliomas. Brain Pathol 25(4):491–504. doi: 10.1111/bpa.12194 CrossRefPubMedGoogle Scholar
  99. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009a) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467CrossRefPubMedGoogle Scholar
  100. Zhang L, Liu W, Alizadeh D, Zhao D, Farrukh O, Lin J, Badie SA, Badie B (2009b) S100B attenuates microglia activation in gliomas: possible role of STAT3 pathway. Glia 59(3):486–498CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anna Carolina Carvalho da Fonseca
    • 1
  • Rackele Amaral
    • 1
  • Celina Garcia
    • 1
  • Luiz Henrique Geraldo
    • 1
  • Diana Matias
    • 1
  • Flavia Regina Souza Lima
    • 1
    Email author
  1. 1.Instituto de Ciências Biomédicas, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations