Glial Cells and Integrity of the Nervous System

  • Rommy von BernhardiEmail author
  • Jaime Eugenín-von Bernhardi
  • Betsi Flores
  • Jaime Eugenín León
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)


Today, there is enormous progress in understanding the function of glial cells, including astroglia, oligodendroglia, Schwann cells, and microglia. Around 150 years ago, glia were viewed as a glue among neurons. During the course of the twentieth century, microglia were discovered and neuroscientists’ views evolved toward considering glia only as auxiliary cells of neurons. However, over the last two to three decades, glial cells’ importance has been reconsidered because of the evidence on their involvement in defining central nervous system architecture, brain metabolism, the survival of neurons, development and modulation of synaptic transmission, propagation of nerve impulses, and many other physiological functions. Furthermore, increasing evidence shows that glia are involved in the mechanisms of a broad spectrum of pathologies of the nervous system, including some psychiatric diseases, epilepsy, and neurodegenerative diseases to mention a few. It appears safe to say that no neurological disease can be understood without considering neuron–glia crosstalk. Thus, this book aims to show different roles played by glia in the healthy and diseased nervous system, highlighting some of their properties while considering that the various glial cell types are essential components not only for cell function and integration among neurons, but also for the emergence of important brain homeostasis.


Astrocytes Microglia Myelin Development Neuron–glia crosstalk Neuroimmunity NG-2 cells Oligodendrocyte Schwann cells Tripartite synapses 



Activity-dependent neurotrophic factor


A disintegrin and metalloproteinase domain-containing protein 10


α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Adenosine triphosphate


Central nervous system


Excitatory amino acid transporters


Epidermal growth factor


Endoplasmic reticulum


Receptor for the (Fragment, crystallizable) region of antibodies


γ-aminobutyric acid


Glial cell-derived neurotrophic factor


Glial fibrillary acidic protein


Insulin-like growth factor 1


Inducible nitric oxide synthase


Inositol trisphosphate


Myelin associated glycoprotein


Myelin basic protein


Myelin oligodendrocyte glycoprotein


Multiple sclerosis


Neural cell adhesion molecule


Neuron–Glia antigen 2




Nitric oxide


Oligodendrocyte precursor cells




Peripheral nervous system


Peripheral myelin protein-22


Protein zero


Reactive oxygen species


Tumor necrosis factor α


Vesicular glutamate transporters


Vesicular nucleotide transporters



Supported by Grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1130874 (JE) and 1131025 (RvB).


  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. doi: 10.1016/j.nbd.2009.07.030 PubMedCrossRefGoogle Scholar
  2. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. doi: 10.1038/nrn1824 PubMedCrossRefGoogle Scholar
  3. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161. doi: 10.1126/science.1227901 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318(5853):1141–1143. doi: 10.1126/science.1148536 PubMedCrossRefGoogle Scholar
  5. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14PubMedCrossRefGoogle Scholar
  6. Araque A (2008) Astrocytes process synaptic information. Neuron Glia Biol 4(1):3–10. doi: 10.1017/S1740925X09000064 PubMedCrossRefGoogle Scholar
  7. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215PubMedCrossRefGoogle Scholar
  8. Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19(5):1708–1716PubMedGoogle Scholar
  9. Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2015) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7(1):a020362. doi: 10.1101/cshperspect.a020362 CrossRefGoogle Scholar
  10. Beck A, Nieden RZ, Schneider HP, Deitmer JW (2004) Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 35(1):47–58PubMedCrossRefGoogle Scholar
  11. Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32(4):447–458. doi: 10.1016/j.devcel.2015.01.016 PubMedCrossRefGoogle Scholar
  12. Bernhardi RV, Nicholls JG (1999) Transformation of leech microglial cell morphology and properties following co-culture with injured central nervous system tissue. J Exp Biol 202(Pt 6):723–728PubMedGoogle Scholar
  13. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602. doi: 10.1016/j.tins.2007.08.007 PubMedCrossRefGoogle Scholar
  14. Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 30(9):1864–1873. doi: 10.1038/emboj.2011.89 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi: 10.1038/nrn2038 PubMedCrossRefGoogle Scholar
  16. Boche D, Cunningham C, Gauldie J, Perry VH (2003) Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 23(10):1174–1182. doi: 10.1097/01.WCB.0000090080.64176.44 CrossRefGoogle Scholar
  17. Bozzali M, Wrabetz L (2004) Axonal signals and oligodendrocyte differentiation. Neurochem Res 29(5):979–988PubMedCrossRefGoogle Scholar
  18. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide Biol Chem/Off J Nitric Oxide Soc 23(3):153–165. doi: 10.1016/j.niox.2010.06.001 CrossRefGoogle Scholar
  19. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. doi: 10.1007/s12035-010-8105-9 PubMedCrossRefGoogle Scholar
  20. Butt AM, Duncan A, Berry M (1994) Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. J Neurocytol 23(8):486–499PubMedCrossRefGoogle Scholar
  21. Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM (2007) A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurother J Am Soc Exp Neurother 4(4):571–579. doi: 10.1016/j.nurt.2007.07.002 CrossRefGoogle Scholar
  22. Cheslow L, Alvarez JI (2016) Glial-endothelial crosstalk regulates blood-brain barrier function. Curr Opin Pharmacol 26:39–46. doi: 10.1016/j.coph.2015.09.010 PubMedCrossRefGoogle Scholar
  23. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433. doi: 10.1016/j.cell.2004.12.020 PubMedCrossRefGoogle Scholar
  24. Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370. doi: 10.1101/cshperspect.a020370 PubMedCrossRefGoogle Scholar
  25. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. doi: 10.1038/nature12776 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol Off J Soc Neuroimmune Pharmacol 4(4):399–418. doi: 10.1007/s11481-009-9164-4 CrossRefGoogle Scholar
  27. Conde JR, Streit WJ (2006) Effect of aging on the microglial response to peripheral nerve injury. Neurobiol Aging 27(10):1451–1461. doi: 10.1016/j.neurobiolaging.2005.07.012 PubMedCrossRefGoogle Scholar
  28. Connor EA, McMahan UJ (1987) Cell accumulation in the junctional region of denervated muscle. J Cell Biol 104(1):109–120PubMedCrossRefGoogle Scholar
  29. Cornejo F, von Bernhardi R (2013) Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. Mediators Inflamm 2013:895651. doi: 10.1155/2013/895651 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151. doi: 10.1002/jnr.23242 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Croft W, Dobson KL, Bellamy TC (2015) Plasticity of neuron-glial transmission: equipping glia for long-term integration of network activity. Neural Plast 2015:765792. doi: 10.1155/2015/765792 PubMedPubMedCentralGoogle Scholar
  32. Dahl G, Muller KJ (2014) Innexin and pannexin channels and their signaling. FEBS Lett 588(8):1396–1402. doi: 10.1016/j.febslet.2014.03.007 PubMedCrossRefGoogle Scholar
  33. Davoust N, Vuaillat C, Androdias G, Nataf S (2008) From bone marrow to microglia: barriers and avenues. Trends Immunol 29(5):227–234. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  34. de Hoz L, Simons M (2015) The emerging functions of oligodendrocytes in regulating neuronal network behaviour. Bioessays News Rev Mol Cell Dev Biol 37(1):60–69. doi: 10.1002/bies.201400127 CrossRefGoogle Scholar
  35. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigao P, Stipursky J, Kahn SA, Romao LF, de Miranda J, Alves-Leon SV, de Souza JM, Castro NG, Panizzutti R, Gomes FC (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 287(49):41432–41445. doi: 10.1074/jbc.M112.380824 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Duan Y, Sahley CL, Muller KJ (2009) ATP and NO dually control migration of microglia to nerve lesions. Dev Neurobiol 69(1):60–72. doi: 10.1002/dneu.20689 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16(8):2508–2521PubMedGoogle Scholar
  38. Eshed-Eisenbach Y, Peles E (2013) The making of a node: a co-production of neurons and glia. Curr Opin Neurobiol 23(6):1049–1056. doi: 10.1016/j.conb.2013.06.003 PubMedCrossRefGoogle Scholar
  39. Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, Seidenbecher C (2010) Contributions of astrocytes to synapse formation and maturation—potential functions of the perisynaptic extracellular matrix. Brain Res Rev 63(1–2):26–38. doi: 10.1016/j.brainresrev.2010.01.001 PubMedCrossRefGoogle Scholar
  40. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593):556–562. doi: 10.1126/science.298.5593.556 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Foran E, Trotti D (2009) Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 11(7):1587–1602. doi: 10.1089/ars.2009.2444 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154(9):4309–4321PubMedGoogle Scholar
  43. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837, 837a–837d. doi: 10.1093/eurheartj/ehr304 Google Scholar
  44. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412. doi: 10.1016/j.nbd.2005.08.002 PubMedCrossRefGoogle Scholar
  45. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi: 10.1126/science.1194637 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gittis AH, Brasier DJ (2015) NEUROSCIENCE. Astrocytes tell neurons when to listen up. Science 349(6249):690–691. doi: 10.1126/science.aad0678 Google Scholar
  47. Goings GE, Kozlowski DA, Szele FG (2006) Differential activation of microglia in neurogenic versus non-neurogenic regions of the forebrain. Glia 54(4):329–342. doi: 10.1002/glia.20381 PubMedCrossRefGoogle Scholar
  48. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575. doi: 10.1126/science.1190721 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Govers R, Oess S (2004) To NO or not to NO: ‘where?’ is the question. Histol Histopathol 19(2):585–605PubMedGoogle Scholar
  50. Grade S, Bernardino L, Malva JO (2013) Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies. Int J Dev Neurosci Off J Int Soc Dev Neurosci 31(7):692–700. doi: 10.1016/j.ijdevneu.2013.01.004 CrossRefGoogle Scholar
  51. Grigoryan T, Birchmeier W (2015) Molecular signaling mechanisms of axon-glia communication in the peripheral nervous system. Bioessays News Rev Mol Cellular Dev Biol 37(5):502–513. doi: 10.1002/bies.201400172 CrossRefGoogle Scholar
  52. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord Off J Mov Disord Soc 26(1):6–17. doi: 10.1002/mds.23455 CrossRefGoogle Scholar
  53. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238. doi: 10.1038/nrn2803 PubMedCrossRefGoogle Scholar
  54. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi: 10.1038/nn1997 PubMedCrossRefGoogle Scholar
  55. Hansen AJ, Nedergaard M (1988) Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 9:195–209PubMedGoogle Scholar
  56. Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464(7288):554–561. doi: 10.1038/nature08845 PubMedCrossRefGoogle Scholar
  57. Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26(5):754–765. doi: 10.1016/j.bbi.2011.11.006 (pii: S0889-1591(11)00597-6)PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229(1):15–30. doi: 10.1006/dbio.2000.9962 PubMedCrossRefGoogle Scholar
  59. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. doi: 10.1124/pr.57.2.4 PubMedCrossRefGoogle Scholar
  60. Hilgetag CC, Barbas H (2009) Are there ten times more glia than neurons in the brain? Brain Struct Function 213(4–5):365–366. doi: 10.1007/s00429-009-0202-z CrossRefGoogle Scholar
  61. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982PubMedGoogle Scholar
  62. Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SM, Peebles D, Heuer H, Waddington SN, Raivich G (2010) Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58(1):11–28. doi: 10.1002/glia.20896 PubMedCrossRefGoogle Scholar
  63. Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V (2004) Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res 76(1):86–97. doi: 10.1002/jnr.20061 PubMedCrossRefGoogle Scholar
  64. Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40(2):156–163. doi: 10.1002/glia.10150 PubMedCrossRefGoogle Scholar
  65. Jha MK, Lee WH, Suk K (2015) Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders. Biochem Pharmacol. doi: 10.1016/j.bcp.2015.11.003 PubMedGoogle Scholar
  66. Jirounek P, Bretton C, Dalle C (2002) Axon-glia interactions modulate axonal excitability in mammalian unmyelinated nerves. J Physiol Paris 96(3–4):237–241PubMedCrossRefGoogle Scholar
  67. Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ (2014) Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 34(18):6323–6333. doi: 10.1523/JNEUROSCI.4673-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kawahara K, Yoshida A, Koga K, Yokoo S, Kuniyasu A, Gotoh T, Sawada M, Nakayama H (2009) Marked induction of inducible nitric oxide synthase and tumor necrosis factor-alpha in rat CD40+ microglia by comparison to CD40− microglia. J Neuroimmunol 208(1–2):70–79. doi: 10.1016/j.jneuroim.2009.01.007 PubMedCrossRefGoogle Scholar
  69. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi: 10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  70. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18. doi: 10.1016/j.neuron.2012.12.023 (pii: S0896-6273(12)01162-2)PubMedCrossRefGoogle Scholar
  71. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313PubMedCrossRefGoogle Scholar
  72. Kleopa KA (2011) The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 31(49):17753–17760. doi: 10.1523/JNEUROSCI.4824-11.2011 PubMedCrossRefGoogle Scholar
  73. Kleopa KA, Orthmann-Murphy J, Sargiannidou I (2010) Gap junction disorders of myelinating cells. Rev Neurosci 21(5):397–419PubMedCrossRefGoogle Scholar
  74. Koizumi S, Fujishita K, Inoue K (2005) Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS. Purinergic Signal 1(3):211–217. doi: 10.1007/s11302-005-6321-y PubMedPubMedCentralCrossRefGoogle Scholar
  75. Koizumi S, Ohsawa K, Inoue K, Kohsaka S (2013) Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 61(1):47–54. doi: 10.1002/glia.22358 PubMedCrossRefGoogle Scholar
  76. Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie 57:1–90PubMedGoogle Scholar
  77. Ladeby R, Wirenfeldt M, Dalmau I, Gregersen R, Garcia-Ovejero D, Babcock A, Owens T, Finsen B (2005a) Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia 50(2):121–131. doi: 10.1002/glia.20159 PubMedCrossRefGoogle Scholar
  78. Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, Dalmau I, Finsen B (2005b) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48(2):196–206. doi: 10.1016/j.brainresrev.2004.12.009 PubMedCrossRefGoogle Scholar
  79. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747. doi: 10.1371/journal.pbio.1001747 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lee YI, Li Y, Mikesh M, Smith I, Nave KA, Schwab MH, Thompson WJ (2016) Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc Natl Acad Sci USA 113(4):E479–487. doi: 10.1073/pnas.1519156113 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lemke G (2006) Neuregulin-1 and myelination. Science’s STKE Sig Transduct Knowl Environ 2006(325):pe11. doi: 10.1126/stke.3252006pe11 Google Scholar
  82. Llorens F, Gil V, del Rio JA (2011) Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J 25(2):463–475. doi: 10.1096/fj.10-162792 PubMedCrossRefGoogle Scholar
  83. Lopez Juarez A, He D, Richard LuQ (2015) Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration. Brain Res. doi: 10.1016/j.brainres.2015.10.051 PubMedGoogle Scholar
  84. Love FM, Son YJ, Thompson WJ (2003) Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol 54(4):566–576. doi: 10.1002/neu.10191 PubMedCrossRefGoogle Scholar
  85. Love FM, Thompson WJ (1998) Schwann cells proliferate at rat neuromuscular junctions during development and regeneration. J Neurosci 18(22):9376–9385PubMedGoogle Scholar
  86. Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52(1–2):142–154. doi: 10.1016/j.neuint.2007.06.005 PubMedCrossRefGoogle Scholar
  87. Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2:20. doi: 10.1186/1742-2094-2-20 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Marshall GP 2nd, Demir M, Steindler DA, Laywell ED (2008) Subventricular zone microglia possess a unique capacity for massive in vitro expansion. Glia 56(16):1799–1808. doi: 10.1002/glia.20730 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev 48(2):251–256. doi: 10.1016/j.brainresrev.2004.12.015 PubMedCrossRefGoogle Scholar
  90. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689. doi: 10.1111/j.1471-4159.2006.03988.x PubMedCrossRefGoogle Scholar
  91. Montes de Oca Balderas P, Aguilera P (2015) A metabotropic-like flux-independent NMDA receptor regulates Ca2+ exit from endoplasmic reticulum and mitochondrial membrane potential in cultured astrocytes. PLoS ONE 10(5):e0126314 10.1371/journal.pone.0126314 Google Scholar
  92. Morel L, Higashimori H, Tolman M, Yang Y (2014) VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J Neurosci 34(33):10950–10962. doi: 10.1523/JNEUROSCI.1167-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Neumann H (2001) Control of glial immune function by neurons. Glia 36(2):191–199PubMedCrossRefGoogle Scholar
  94. Newbern J, Birchmeier C (2010) Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 21(9):922–928. doi: 10.1016/j.semcdb.2010.08.008 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542. doi: 10.1016/S0166-2236(03)00237-6 PubMedCrossRefGoogle Scholar
  96. Ni Y, Parpura V (2009) Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels. Glia 57(12):1296–1305. doi: 10.1002/glia.20849 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720. doi: 10.1038/35055553 PubMedCrossRefGoogle Scholar
  98. O’Keefe GM, Nguyen VT, Benveniste EN (2002) Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: Implications in neurological diseases. J Neurovirol 8(6):496–512. doi: 10.1080/13550280290100941 PubMedCrossRefGoogle Scholar
  99. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. doi: 10.1007/978-1-61779-452-0_3 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oliveira JF, Sardinha VM, Guerra-Gomes S, Araque A, Sousa N (2015) Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 38(9):535–549. doi: 10.1016/j.tins.2015.07.006 PubMedCrossRefGoogle Scholar
  101. Olsen JA, Akirav EM (2015) Remyelination in multiple sclerosis: cellular mechanisms and novel therapeutic approaches. J Neurosci Res 93(5):687–696. doi: 10.1002/jnr.23493 PubMedCrossRefGoogle Scholar
  102. Orellana JA, Busso D, Ramirez G, Campos M, Rigotti A, Eugenin J, von Bernhardi R (2014) Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet. Front Cell Neurosci 8:403. doi: 10.3389/fncel.2014.00403 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Orellana JA, Montero TD, von Bernhardi R (2013) Astrocytes inhibit nitric oxide-dependent Ca2+ dynamics in activated microglia: involvement of ATP released via pannexin 1 channels. Glia 61(12):2023–2037. doi: 10.1002/glia.22573 PubMedCrossRefGoogle Scholar
  104. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424. doi: 10.1152/physrev.00029.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pakkenberg B, Gundersen HJ (1988) Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator. J Microsc 150(Pt 1):1–20PubMedCrossRefGoogle Scholar
  106. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. doi: 10.1152/physrev.00041.2013 PubMedCrossRefGoogle Scholar
  107. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262. doi: 10.1002/glia.20528 PubMedCrossRefGoogle Scholar
  108. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431. doi: 10.1016/j.tins.2009.05.001 PubMedCrossRefGoogle Scholar
  109. Perez-Alvarez A, Araque A (2013) Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets 14(11):1220–1224PubMedCrossRefGoogle Scholar
  110. Perry VH (1998) A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 90(2):113–121PubMedCrossRefGoogle Scholar
  111. Petrelli F, Bezzi P (2016) Novel insights into gliotransmitters. Curr Opin Pharmacol 26:138–145. doi: 10.1016/j.coph.2015.11.010 PubMedCrossRefGoogle Scholar
  112. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535. doi: 10.1016/j.tins.2007.07.007 PubMedCrossRefGoogle Scholar
  113. Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4(12):968–980. doi: 10.1038/nrn1253 PubMedCrossRefGoogle Scholar
  114. Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231. doi: 10.3389/fncel.2014.00231 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Quintanilla RA, Orellana JA, von Bernhardi R (2012) Understanding risk factors for Alzheimer’s disease: interplay of neuroinflammation, connexin-based communication and oxidative stress. Arch Med Res 43(8):632–644. doi: 10.1016/j.arcmed.2012.10.016 PubMedCrossRefGoogle Scholar
  116. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30(1):77–105PubMedCrossRefGoogle Scholar
  117. Ramírez G, Rey S, von Bernhardi R (2008) Proinflammatory stimuli are needed for induction of microglial cell-mediated AβPP244-C and Aβ-neurotoxicity in hippocampal cultures. J Alzheimers Dis 15(1):45–59PubMedGoogle Scholar
  118. Ramirez G, Toro R, Dobeli H, von Bernhardi R (2005) Protection of rat primary hippocampal cultures from A beta cytotoxicity by pro-inflammatory molecules is mediated by astrocytes. Neurobiol Dis 19(1–2):243–254. doi: 10.1016/j.nbd.2005.01.007 PubMedCrossRefGoogle Scholar
  119. Rassoulpour A, Wu HQ, Ferre S, Schwarcz R (2005) Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 93(3):762–765. doi: 10.1111/j.1471-4159.2005.03134.x PubMedCrossRefGoogle Scholar
  120. Reichenbach A, Bringmann A (2013) New functions of Muller cells. Glia 61(5):651–678. doi: 10.1002/glia.22477 PubMedCrossRefGoogle Scholar
  121. Ren L, Lubrich B, Biber K, Gebicke-Haerter PJ (1999) Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res Mol Brain Res 65(2):198–205PubMedCrossRefGoogle Scholar
  122. Riquelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 363(1489):123–137. doi: 10.1098/rstb.2006.2016 PubMedCrossRefGoogle Scholar
  123. Ropert N, Jalil A, Li D (2015) Expression and cellular function of vSNARE proteins in brain astrocytes. Neuroscience. doi: 10.1016/j.neuroscience.2015.10.036 PubMedGoogle Scholar
  124. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222. doi: 10.1038/nature09611 PubMedCrossRefGoogle Scholar
  125. Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115(1):101–122PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera SS, Endres K, Lutz B, Radyushkin K, Trotter J, Mittmann T (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12(11):e1001993. doi: 10.1371/journal.pbio.1001993 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Salzer JL (2015) Schwann cell myelination. Cold Spring Harb Perspect Biol 7(8):a020529. doi: 10.1101/cshperspect.a020529 PubMedCrossRefGoogle Scholar
  128. Samuels SE, Lipitz JB, Wang J, Dahl G, Muller KJ (2013) Arachidonic acid closes innexin/pannexin channels and thereby inhibits microglia cell movement to a nerve injury. Dev Neurobiol 73(8):621–631. doi: 10.1002/dneu.22088 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Santello M, Cali C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331. doi: 10.1007/978-3-7091-0932-8_14 PubMedCrossRefGoogle Scholar
  130. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54(7):716–725. doi: 10.1002/glia.20374 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Schafer DP, Rasband MN (2006) Glial regulation of the axonal membrane at nodes of Ranvier. Curr Opin Neurobiol 16(5):508–514. doi: 10.1016/j.conb.2006.08.003 PubMedCrossRefGoogle Scholar
  132. Scherer SS (1999) Nodes, paranodes, and incisures: from form to function. Ann N Y Acad Sci 883:131–142PubMedCrossRefGoogle Scholar
  133. Schitine C, Nogaroli L, Costa MR, Hedin-Pereira C (2015) Astrocyte heterogeneity in the brain: from development to disease. Front Cell Neurosci 9:76. doi: 10.3389/fncel.2015.00076 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30. doi: 10.1007/978-3-319-08894-5_2 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schwartz M (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 23(4):385–394CrossRefGoogle Scholar
  136. Shimada IS, LeComte MD, Granger JC, Quinlan NJ, Spees JL (2012) Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci 32(23):7926–7940. doi: 10.1523/JNEUROSCI.4303-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17(5):533–540. doi: 10.1016/j.conb.2007.08.003 PubMedCrossRefGoogle Scholar
  138. Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26(10):531–535. doi: 10.1016/j.tins.2003.08.005 PubMedCrossRefGoogle Scholar
  139. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-α. FASEB J 20(6):670–682. doi: 10.1096/fj.05-5106com PubMedCrossRefGoogle Scholar
  140. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267. doi: 10.1038/nn1623 PubMedCrossRefGoogle Scholar
  141. Tanaka T, Yoshida S (2014) Mechanisms of remyelination: recent insight from experimental models. Biomol Concepts 5(4):289–298. doi: 10.1515/bmc-2014-0015 PubMedCrossRefGoogle Scholar
  142. Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55(4):360–368. doi: 10.1002/glia.20462 PubMedCrossRefGoogle Scholar
  143. Trotter J (2005) NG2-positive cells in CNS function and the pathological role of antibodies against NG2 in demyelinating diseases. J Neurol Sci 233(1–2):37–42. doi: 10.1016/j.jns.2005.03.024 PubMedCrossRefGoogle Scholar
  144. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2015) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. doi: 10.1016/j.preteyeres.2015.06.003 PubMedGoogle Scholar
  145. Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42(5):1291–1301. doi: 10.1042/BST20140107 PubMedCrossRefGoogle Scholar
  146. Vesce S, Bezzi P, Volterra A (1999) The active role of astrocytes in synaptic transmission. Cell Mol Life Sci 56(11–12):991–1000PubMedCrossRefGoogle Scholar
  147. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. doi: 10.1038/nrn1722 [pii]PubMedCrossRefGoogle Scholar
  148. von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12(4):215–232CrossRefGoogle Scholar
  149. von Bernhardi R, Cornejo F, Parada GE, Eugenin J (2015a) Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 9:426. doi: 10.3389/fncel.2015.00426 Google Scholar
  150. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015b) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124. doi: 10.3389/fnagi.2015.00124 Google Scholar
  151. von Bernhardi R, Muller KJ (1995) Repair of the central nervous system: lessons from lesions in leeches. J Neurobiol 27(3):353–366. doi: 10.1002/neu.480270308 CrossRefGoogle Scholar
  152. von Bernhardi R, Tichauer J, Eugenin-von Bernhardi L (2011) Proliferating culture of aged microglia for the study of neurodegenerative diseases. J Neurosci Methods 202(1):65–69. doi: 10.1016/j.jneumeth.2011.08.027 CrossRefGoogle Scholar
  153. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980. doi: 10.1523/JNEUROSCI.4363-08.2009 PubMedCrossRefGoogle Scholar
  154. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447. doi: 10.1523/JNEUROSCI.0037-06.2006 PubMedCrossRefGoogle Scholar
  155. Waxman SG, Bennett MV (1972) Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nat New Biol 238(85):217–219PubMedCrossRefGoogle Scholar
  156. Wirenfeldt M, Babcock AA, Ladeby R, Lambertsen KL, Dagnaes-Hansen F, Leslie RG, Owens T, Finsen B (2005) Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J Neurosci Res 82(4):507–514. doi: 10.1002/jnr.20659 PubMedCrossRefGoogle Scholar
  157. Xu K, Terakawa S (1999) Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons. J Exp Biol 202(Pt 15):1979–1989PubMedGoogle Scholar
  158. Yang QK, Xiong JX, Yao ZX (2013) Neuron-NG2 cell synapses: novel functions for regulating NG2 cell proliferation and differentiation. BioMed Res Int 2013:402843. doi: 10.1155/2013/402843 PubMedPubMedCentralGoogle Scholar
  159. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6(1):43–50. doi: 10.1038/nn980 PubMedCrossRefGoogle Scholar
  160. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2). doi: 10.1042/AN20110061 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rommy von Bernhardi
    • 1
    Email author
  • Jaime Eugenín-von Bernhardi
    • 2
    • 3
  • Betsi Flores
    • 1
  • Jaime Eugenín León
    • 4
  1. 1.Department of Neurology, School of MedicinePontificia Universidad Católica de ChileSantiagoChile
  2. 2.Physiological Genomics, Biomedical CenterLudwig-Maximilians-UniversityMunichGermany
  3. 3.Graduate School of Systemic NeuroscienceLudwig-Maximilians-UniversityPlanegg-Martinsried, MunichGermany
  4. 4.Department of Biology, Faculty of Chemistry and BiologyUSACHSantiagoChile

Personalised recommendations