Skip to main content

Insect Hydrocarbons: Biochemistry and Chemical Ecology

  • Chapter
  • First Online:

Abstract

Cuticular hydrocarbons of insects often consist of complex mixtures of straight chain, unsaturated and methyl-branched components with 21 to 40+ carbons. They function to restrict water loss, to prevent a lethal rate of desiccation and serve in chemical communication in many species. This chapter describes the chemistry and chemical ecology of insect hydrocarbons with an emphasis on their role as close range or contact pheromones. Hydrocarbons are formed in oenocytes and their biosynthetic pathways are described. Recent work has begun to take advantage of the tools of molecular biology to better understand hydrocarbon formation and this information is summarized. The various methods by which insects utilize hydrocarbons as inter- and intraspecific chemical signals are also described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc Roy Soc Lond B Bio 266:1419–1426

    Article  CAS  Google Scholar 

  • Ando T, Inomata SI, Yamamoto M (2004) Lepidopteran sex pheromones. Top Curr Chem 239:51–96

    Article  CAS  PubMed  Google Scholar 

  • Antony B, Fujii T, Moto K, Matsumoto S, Fukuzawa M, Nakano R, Tatsuki S, Ishikawa Y (2009) Pheromone-gland-specific fatty-acyl reductase in the adzuki bean borer, Ostrinia scapulalis (Lepidoptera: Crambidae). Insect Biochem Mol Biol 39:90–95

    Article  CAS  PubMed  Google Scholar 

  • Bagnères A-G, Lorenzi MC (2010) Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 281–324

    Google Scholar 

  • Baker GL, Vroman HE, Padmore J (1963) Hydrocarbons of the American cockroach. Biochem Biophys Res Commun 13:360–365

    Article  CAS  Google Scholar 

  • Bartelt RJ (2010) Volatile hydrocarbon pheromones of beetles. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 448–476

    Chapter  Google Scholar 

  • Bartelt RJ, Cossé AA, Zilkowski BW, Weisleder D, Momany FA (2001) Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J Chem Ecol 27:2397–2423

    Article  CAS  PubMed  Google Scholar 

  • Bello JE, McElfresh S, Millar JG (2015) Isolation and determination of absolute configurations of insect-produced methyl-branched hydrocarbons. Proc Natl Acad Sci U S A 112:1077–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    Article  CAS  PubMed  Google Scholar 

  • Billeter JC, Atallah J, Krupp JJ, Millar JG, Levine JD (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991

    Article  CAS  PubMed  Google Scholar 

  • Blailock TT, Blomquist GJ, Jackson LL (1976) Biosynthesis of 2-methylalkanes in the cricket Nemobius fasciatus and Gryllus pennsylvanicus. Biochem Biophys Res Commun 68:841–849

    Article  CAS  PubMed  Google Scholar 

  • Bland JM, Osbrink WLA, Cornelius ML, Lax AR, Vigo CB (2001) Solid-phase microextraction for the detection of termite cuticular hydrocarbons. J Chromatogr A 932:119–127

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ (2010a) Biosynthesis of cuticular hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 35–52

    Chapter  Google Scholar 

  • Blomquist GJ (2010b) Structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 19–34

    Chapter  Google Scholar 

  • Blomquist GJ, Bagnères A-G (2010) Introduction: history and overview of insect hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 3–18

    Chapter  Google Scholar 

  • Blomquist GJ, Kearney GP (1976) Biosynthesis of the internally branched monomethylalkanes in the cockroach Periplaneta fulliginosa. Arch Biochem Biophys 173:546–553

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Major MA, Lok JB (1975) Biosynthesis of 3-methylpentacosane in the cockroach Periplaneta americana. Biochem Biophys Res Commun 64:43–50

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Howard RW, McDaniel CA, Remaley S, Dwyer LA, Nelson DR (1980) Application of methoxymercuration-demercuration followed by mass spectrometry as a convenient microanalytical technique for double-bond location in insect-derived alkenes. J Chem Ecol 6:257–269

    Article  CAS  Google Scholar 

  • Blomquist GJ, Dwyer LA, Chu AJ, Ryan RO, de Renobales M (1982) Biosynthesis of linoleic acid in a termite, cockroach and cricket. Insect Biochem 12:349–353

    Article  CAS  Google Scholar 

  • Blomquist GJ, Guo L, Gu P, Blomquist C, Reitz RC, Reed JR (1994) Methyl-branched fatty acids and their biosynthesis in the housefly, Musca domestica L. (Diptera: Muscidae). Insect Biochem Mol Biol 24:803–810

    Article  CAS  Google Scholar 

  • Blount BK, Chibnall AC, Mangouri EI (1937) The wax of the white pine chermes. Biochem J 31:1375–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bognar AL, Paliyath G, Rogers L, Kolattukudy PE (1984) Biosynthesis of alkanes by particulate and solubilized enzyme preparations from pea leaves (Pisum sativum). Arch Biochem Biophys 235:8–17

    Article  CAS  PubMed  Google Scholar 

  • Böröczky K, Crook DJ, Jones TH, Kenny JC, Zylstra KE, Mastro VC, Tumlinson JH (2009) Monoalkenes as contact sex pheromone components of the woodwasp Sirex noctilio. J Chem Ecol 35:1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Bos N, d’Ettorre P (2012) Recognition of social identity in ants. Psychology 3:83

    Google Scholar 

  • Braga MV, Pinto ZT, de Carvatho Queiroz MM, Matsumoto N, Blomquist GJ (2013) Cuticular hydrocarbons as a tool for the identification of insect species: Puparial cases from Sarcophagidae. Acta Trop 128:479–485

    Article  CAS  PubMed  Google Scholar 

  • Breed MD (1998a) Recognition pheromones of the honey bee. Bioscience 48:463–470

    Article  Google Scholar 

  • Breed MD (1998b) Chemical cues in kin recognition: criteria for identification, experimental approaches, and the honey bee as an example. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, Boulder, pp 57–78

    Google Scholar 

  • Breed MD, Diaz PH, Lucero KD (2004) Olfactory information processing in honeybee, Apis mellifera, nestmate recognition. Anim Behav 68:921–928

    Article  Google Scholar 

  • Buckner JS (2010) Oxygenated derivatives of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 187–203

    Chapter  Google Scholar 

  • Buczkowski G, Suib S, Kumar R, Silverman J (2005) Shared exogenous cues diminish intercolony aggression in the Argentine ant (Linepithema humile). J Chem Ecol 31:829–843

    Article  CAS  PubMed  Google Scholar 

  • Buellesbach J, Greim C, Raychoudhury R, Schmitt T (2014) Asymmetric assortative mating behaviour reflects incomplete pre-zygotic isolation in the Nasonia species complex. Ethology 120:834–843

    Article  Google Scholar 

  • Carlson DA, Schlein Y (1991) Unusual polymethyl alkenes in tsetse flies acting as abstinon in Glossina morsitans. J Chem Ecol 17:267–284

    Article  CAS  PubMed  Google Scholar 

  • Carlson DA, Mayer MS, Silhacek DL, Janaes JD, Beroza M, Bierl BA (1971) Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science 174:76–78

    Article  CAS  PubMed  Google Scholar 

  • Carlson DA, Nelson DR, Langley PA, Coates TW, Davis TL, Leegwater-Van Der Linden ME (1984) Contact pheromone in the tsetse fly Glossina pallidipes (Austen): identification and synthesis. J Chem Ecol 10:429–450

    Article  CAS  PubMed  Google Scholar 

  • Carlson DA, Roan C-S, Yost RA (1989) Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal Chem 61:1564–1571

    Article  CAS  Google Scholar 

  • Carlson DA, Bernier UR, Sutton BD (1998a) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1445–1465

    Google Scholar 

  • Carlson DA, Offor II, El-Messoussi S, Matsuyama K, Mori K, Jallon J-M (1998b) Sex pheromone of Glossina tachinoides: isolation, identification, and synthesis. J Chem Ecol 24:1563–1575

    Article  CAS  Google Scholar 

  • Carot-Sans G, Munoz L, Piulachs MD, Guerrero A, Rosell G (2015) Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis. Insect Molec Biol 24:82–92

    Article  CAS  Google Scholar 

  • Châline N, Sandoz J-C, Martin SJ, Ratnieks FLW, Jones GR (2005) Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). Chem Senses 30:327–335

    Article  PubMed  CAS  Google Scholar 

  • Chase J, Jurenka RA, Schal C, Halarnkar PP, Blomquist GJ (1990) Biosynthesis of methyl branched hydrocarbons in the German cockroach Blattella germanica (L.) (Orthoptera, Blattellidae). Insect Molec Biol 20:149–156

    CAS  Google Scholar 

  • Chase J, Touhara K, Prestwich GD, Schal C, Blomquist GJ (1992) Biosynthesis and endocrine control of the production of the German cockroach sex pheromone, 3,11-dimethylnonacosan-2-one. Proc Natl Acad Sci U S A 89:6050–6054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheesbrough TM, Kolattukudy PE (1988) Microsomal preparations from animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem 263:2738–2742

    CAS  PubMed  Google Scholar 

  • Chertemps T, Duportets L, Labeur C, Udeda R, Takahashi K, Saigo K, Wicker-Thomas C (2007) A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 104:4273–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibnall AC, Piper SH, Pollard A, Willimas EF, Sahai PN (1934) The constitution of the primary alcohols, fatty acids and paraffins present in plant and insect waxes. Biochem J 28:2189–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H, Loehlin DW, Dufour HD, Vaccarro K, Millar JG, Carroll SB (2014) A single gene affects both ecological divergence and mate choice in Drosophila. Science 343:148–151

    Article  CAS  Google Scholar 

  • Colazza S, Aquila G, De Pasquale C, Peri E, Millar J (2007) The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J Chem Ecol 33:1405–1420

    Article  CAS  PubMed  Google Scholar 

  • Couvillon MJ, Caple JP, Endsor SL, Kärcher M, Russell TE, Storey DE, Ratnieks FLW (2007) Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer. Biol Lett 3:228–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Crozier RH (1987) Genetic aspects of kin recognition: concepts, models and synthesis. In: Fletcher DJC, Michener CD (eds) Kin recognition in animals. Wiley, Chichester, pp 55–73

    Google Scholar 

  • Crozier RH, Dix MW (1979) Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav Ecol Sociobiol 4:217–224

    Article  Google Scholar 

  • Cvačka J, Jiros P, Sobotnik J, Hanus R, Svatos A (2006) Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J Chem Ecol 32:409–434

    Article  PubMed  CAS  Google Scholar 

  • Dallerac R, Labeur C, Jallon J-M, Knipple DC, Roelofs WL, Wicker-Thomas C (2000) A ∆9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 97:9449–9454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani FR, Jones GR, Destri S, Spencer SH, Turillazzi S (2001) Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 62:165–167

    Article  Google Scholar 

  • Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489

    Article  CAS  PubMed  Google Scholar 

  • Dembeck L, Böröczky K, Huang W, Schal C, Anholt R, Mackay T (2015) Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife. doi:10.7554/eLife.09861

    PubMed  PubMed Central  Google Scholar 

  • Dennis MW, Kolattukudy PE (1991) Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus brauni. Arch Biochem Biophys 287:268–275

    Article  CAS  PubMed  Google Scholar 

  • Desena ML, Edman JD, Clark JM, Symington SB, Scott TW (1999) Aedes aegypti (Diptera: Culicidae) age determination by cuticular hydrocarbon analysis of female legs. J Med Entomol 36:824–830

    Article  CAS  PubMed  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Ann Rev Entomol 39:129–154

    Article  CAS  Google Scholar 

  • Dillwith JW, Nelson JH, Pomonis JG, Nelson DR, Blomquist GJ (1982) A 13C NMR study of methyl-branched hydrocarbon biosynthesis in the housefly. J Biol Chem 257:11305–11314

    CAS  PubMed  Google Scholar 

  • Dillwith JW, Adams TS, Blomquist GJ (1983) Correlation of housefly sex pheromone production with ovarian development. J Insect Physiol 29:377–386

    Article  CAS  Google Scholar 

  • Dinter K, Paarmann W, Peschke K, Arndt E (2002) Ecological, behavioural and chemical adaptations to ant predation in species of Thermophilum and Graphipterus (Coleoptera: Carabidae) in the Sahara desert. J Arid Environ 50:267–286

    Article  Google Scholar 

  • Drijfhout FK (2010) Cuticular hydrocarbons: a new tool in forensic entomology? In: Amendt J, Lee Goff M, Campobasso CP, Grassberger M (eds) Current concepts in forensic entomology. Springer, New York, pp 179–203

    Google Scholar 

  • Dwyer LA, Blomquist GJ, Nelson JH, Pomonis JG (1981a) A 13C-NMR study of the biosynthesis of 3-methylpentacosane in the American cockroach. Biochim Biophys Acta 663:536–544

    Article  CAS  PubMed  Google Scholar 

  • Dwyer LA, de Renobales M, Blomquist GJ (1981b) Biosynthesis of (Z, Z)-6,9-heptacosadiene in the American cockroach. Lipids 16:810–814

    Article  CAS  Google Scholar 

  • Elgar MA, Allan RA (2004) Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften 91:143–147

    Article  CAS  PubMed  Google Scholar 

  • Elgar MA, Allan RA (2006) Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: is it colony-specific? J Ethol 24:239–246

    Article  Google Scholar 

  • Eliyahu D, Najima S, Mori K, Schal C (2008) New contact sex pheromone components of the German cockroach, Blattella germanica, predicted from the proposed biosynthetic pathway. J Chem Ecol 34:229–237

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Itino T (2013) Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ant. Popul Ecol 5:27–34

    Article  Google Scholar 

  • Fan Y, Zurek L, Dykstra MJ, Schal C (2003) Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica. Naturwissenschaften 90:121–126

    CAS  PubMed  Google Scholar 

  • Ferveur J-F (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295

    Article  PubMed  Google Scholar 

  • Ferveur J-F, Cobb M (2010) Behavioral and evolutionary roles of cuticular hydrocarbons in Drosophila. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 325–343

    Chapter  Google Scholar 

  • Ferveur J-F, Savarit F, O’Kane CJ, Sureau G, Greenspan RJ, Jallon J-M (1997) Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–1558

    Article  CAS  PubMed  Google Scholar 

  • Fletcher MT, McGrath MJ, Konig WA, Moore CH, Cribb BW, Allsopp PG, Kitching W (2001) A novel group of allenic hydrocarbons from five Australian (Melolonthine) beetles. Chem Commun 2001:885–886

    Article  Google Scholar 

  • Fletcher MT, Allsopp PG, McGrath MJ, Chow S, Gallagher OP, Hull C, Cribb BW, Moore CJ, Kitching W (2008) Diverse cuticular hydrocarbons from Australian canebeetles (Coleoptera: Scarabaeidae). Aust J Entomol 47:153–159

    Article  Google Scholar 

  • Francis GW, Veland K (1981) Alkyl thiolation for the determination of double-bond positions in linear alkenes. J Chromatogr 219:379–384

    Article  CAS  Google Scholar 

  • Fukaya M, Wakamura S, Yasuda T, Senda S, Omata T, Fukusaki E (1997) Sex pheromonal activity of geometric and optical isomers of synthetic contact pheromone to males of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). Appl Entomol Zool 32:654–656

    CAS  Google Scholar 

  • Fukaya M, Akino T, Yasuda T, Wakamura S, Satoda S, Senda S (2000) Hydrocarbon components in contact sex pheromone of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae) and pheromonal activity of synthetic hydrocarbons. Entomol Sci 3:211–218

    Google Scholar 

  • Geiselhardt S, Schmitt T, Peschke K (2009) Chemical composition and pheromonal function of the defensive secretions in the subtribe Stizopina (Coleoptera, Tenebrionidae, Opatrini). Chemoecology 19:1–6

    Article  CAS  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2012) Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett 15:971–977

    Article  PubMed  Google Scholar 

  • Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482

    Article  CAS  Google Scholar 

  • Ginzel MD (2010) Hydrocarbons as contact pheromones of longhorned beetles (Coleoptera: Cerambycidae). In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 375–389

    Chapter  Google Scholar 

  • Ginzel MD, Hanks LM (2005) Role of host plant volatiles in mate location for three species of longhorned beetles. J Chem Ecol 31:213–217

    Article  CAS  PubMed  Google Scholar 

  • Ginzel MD, Blomquist GJ, Millar JG, Hanks LM (2003a) Role of contact pheromones in mate recognition in Xylotrechus colonus. J Chem Ecol 29:533–545

    Article  CAS  PubMed  Google Scholar 

  • Ginzel MD, Millar JG, Hanks LM (2003b) (Z)-9-pentacosene—contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology 13:135–141

    Article  CAS  Google Scholar 

  • Ginzel MD, Moreira JA, Ray AM, Millar JG, Hanks LM (2006) (Z)-9-Nonacosene—major component of the contact sex pheromone of the beetle Megacyllene caryae. J Chem Ecol 32:435–451

    Article  CAS  PubMed  Google Scholar 

  • Goodrich BS (1970) Cuticular lipids of adults and puparia of the Australian sheep blowfly Lucilia cuprina (Wied.). J Lipid Res 11:1–6

    CAS  PubMed  Google Scholar 

  • Gordon DM (2002) The regulation of foraging activity in red harvester ant task decisions. Am Nat 159:509–518

    Article  PubMed  Google Scholar 

  • Gordon DM, Holmes S, Nacu S (2007) The short-term regulation of foraging in harvester ants. Behav Ecol 19:217–222

    Article  Google Scholar 

  • Greene M (2010) Cuticular hydrocarbon cues in the formation and maintenance of insect social groups. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 242–253

    Google Scholar 

  • Greene MJ, Pinter-Wollman N, Gordon DM (2013) Interactions with combined chemical cues inform harvester ant foragers’ decisions to leave the nest in search of food. PLoS One 8, e52219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gries G, Borden JH, Gries R, Lafontaine JP, Dixon EA, Wieser H, Whitehead AT (1992) 4-Methylen-6, 6-dimethylbicyclo[3.1.1]hept-2-ene (verbenene): new aggregation pheromone of the scolytid beetle Dendroctonus rufipennis. Naturwissenschaften 79:367–368

    Article  CAS  Google Scholar 

  • Gu X, Quilici D, Juarez P, Blomquist GJ, Schal C (1995) Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of the German cockroach (Blattella germanica). J Insect Physiol 41:257–267

    Article  CAS  Google Scholar 

  • Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107

    Article  CAS  PubMed  Google Scholar 

  • Haverty MI, Grace JK, Nelson LJ, Yamamoto RT (1996) Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol 22:1813–1834

    Article  CAS  PubMed  Google Scholar 

  • Hefetz A (2007) The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecological News 10:59–68

    Google Scholar 

  • Heinze J, Foitzik S, Hippert A, Hölldobler B (1996) Apparent dear-enemy phenomenon and environmental based recognition cues in the ant Leptothorax nylanderi. Ethology 102:510–522

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1978) Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) Isoptera:Rhinotermitidae). J Chem Ecol 4:233–245

    Article  CAS  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431–433

    Article  CAS  PubMed  Google Scholar 

  • Howard RW, McDaniel CA, Nelson DR, Blomquist GJ, Gelbaum LT, Zalkow LH (1982) Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species and caste-recognition cues. J Chem Ecol 8:1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Hughes GP, Spikes AE, Holland JD, Ginzel MD (2011) Evidence for the stratification of hydrocarbons in the epicuticular wax layer of female Megacyllene robiniae (Coleoptera: Cerambycidae). Chemoecology 21:99–105

    Article  CAS  Google Scholar 

  • Hughes GP, Bello JE, Millar JG, Ginzel MD (2015) Determination of the absolute configuration of female-produced contact sex pheromone components of the longhorned beetle, Neoclytus acuminatus acuminatus (F). J Chem Ecol. doi:10.1007/s10886-015-0639-x

    Google Scholar 

  • Hugo LE, Kay BH, Eaglesham GK, Holling N, Ryan PA (2006) Investigation of cuticular hydrocarbons for determining the age and survivorship of Australasian mosquitoes. Am J Trop Med Hyg 74:462–474

    CAS  PubMed  Google Scholar 

  • Ichinose K, Lenoir A (2009) Ontogeny of hydrocarbon profiles in the ant Aphaenogaster senilis and effects of social isolation. C R Biol 332:697–703

    Article  CAS  PubMed  Google Scholar 

  • Jallon JM, David JR (1987) Variations in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41:294–302

    Article  Google Scholar 

  • Juarez P, Chase J, Blomquist GJ (1992) A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone. Arch Biochem Biophys 293:333–341

    Article  CAS  PubMed  Google Scholar 

  • Jutsum AR, Saunders TS, Cherrett JM (1979) Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Anim Behav 27:839–844

    Article  Google Scholar 

  • Kaib M, Franke S, Francke W, Brandl R (2002) Cuticular hydrocarbons in a termite: phenotypes and a neighbour-stranger effect. Physiol Entomol 27:189–198

    Article  CAS  Google Scholar 

  • Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37:205–212

    Article  CAS  PubMed  Google Scholar 

  • Kather R, Drijfhout FP, Shemilt S, Martin SJ (2015) Evidence for colony-specific differences in chemical mimicry in the parasitic mite Varroa destructor. Chemoecology 25:215–222

    Article  CAS  Google Scholar 

  • Kühbandner S, Sperling S, Mori K, Ruther J (2012) Deciphering the signature of cuticular lipids with contact sex pheromone function in a parasitic wasp. J Exp Biol 215:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Kühbandner S, Bello JE, Mori K, Millar JG, Ruther J (2013) Elucidating structure-bioactivity relationships of methyl-branched alkanes in the contact sex pheromone of the parasitic wasp Lariophagus distinguendus. Insects 4:743–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo TH, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD (2012) Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J Exp Biol 215:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacey ES, Ginzel MD, Millar JG, Hanks LM (2008) A major component of the contact sex pheromone of the cerambycid beetle, Neoclytus acuminatus acuminatus is 7-methylheptacosane. Physiol Entomol 33:209–216

    Article  CAS  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Lahav S, Soroker V, Hefetz A, Vander Meer RK (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249

    Article  CAS  Google Scholar 

  • Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542

    Article  PubMed  CAS  Google Scholar 

  • Le Conte Y, Huang ZY, Roux M, Zeng ZJ, Christidès J-P, Bagnères A-G (2015) Varroa destructor changes its cuticular hydrocarbons to mimic new hosts. Biol Lett 11(6)

    Google Scholar 

  • Lenoir A, Malosse C, Yamaoka R (1997) Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem Syst Ecol 25:379–389

    Article  CAS  Google Scholar 

  • Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416

    Article  CAS  PubMed  Google Scholar 

  • Liebig J (2010) Hydrocarbon profiles indicate fertility and dominance’s status in ant, bee, and wasp colonies. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 254–281

    Chapter  Google Scholar 

  • Liebig J, Peeters C, Oldham NJ, Markstadter C, Hölldobler B (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc Natl Acad Sci U S A 97:4124–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liepert C, Dettner K (1996) Role of cuticular hydrocarbons of aphid parasitoids in the relationships to aphid-attending ants. J Chem Ecol 22:695–707

    Article  CAS  PubMed  Google Scholar 

  • Lockey KH (1980) Insect cuticular hydrocarbons. Comp Biochem Physiol B 65:457–462

    Google Scholar 

  • Lockey KH (1985) Insect cuticular lipids. Comp Biochem Physiol B 81:263–267

    Article  Google Scholar 

  • Lorenzi MC, Sledge MF, Laiolo P, Sturlini E, Turillazzi S (2004) Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. J Insect Physiol 50:935–941

    Article  CAS  PubMed  Google Scholar 

  • Malausa T, Bethenod M, Bontemps A, Bourget D, Cornuet J, Ponsard S (2005) Assortative mating in sympatric host races of the European corn borer. Science 308:258–261

    Article  CAS  PubMed  Google Scholar 

  • Marsh E, Neil G, Waugh MW (2013) Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis. ACS Catal 3:2515–2521

    Article  CAS  Google Scholar 

  • Martin SJ, Vitikainen E, Helanterä H, Drijfhout FP (2008) Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc R Soc B 275:1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath MJ, Fletcher MT, Konig WA, Moore CJ, Cribb BW, Allsopp PG, Kitching W (2003) A suite of novel allenes from Australian melolonthine scarab beetles. Structure, synthesis and stereochemistry. J Organic Chem 68:3739–3748

    Article  CAS  Google Scholar 

  • Millar JG (2000) Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu Rev Entomol 45:575–604

    Article  CAS  PubMed  Google Scholar 

  • Millar JG (2010) Polyene hydrocarbons, epoxides, and related compounds as components of lepidopteran pheromone blends. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 390–447

    Chapter  Google Scholar 

  • Ming QL, Lewis SM (2010) Mate-recognition & sex differences in cuticular hydrocarbons in a diurnal firefly, Ellychnia corrusca. Ann Entomol Soc Am 103:128–133

    Article  Google Scholar 

  • Moneti G, Dani FR, Pieraccini G, Turillazzi S (1997) Solid-phase microextraction of insect epicuticular hydrocarbons for gas chromatographic mass spectrometric analysis. Rapid Commun Mass Sp 11:857–862

    Article  CAS  Google Scholar 

  • Monnin T, Malosse C, Peeters C (1998) Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in the queenless ant Dinoponera quadriceps. J Chem Ecol 24:473–490

    Article  CAS  Google Scholar 

  • Moore HE, Adam CD, Drijfhout FP (2013) Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval. J Forensic Sci 58:404–412

    Article  CAS  PubMed  Google Scholar 

  • Mpuru S, Reed JR, Reitz RC, Blomquist GJ (1996) Mechanism of hydrocarbon biosynthesis from aldehyde in selected insect species: Requirement for O2 and NADPH and carbonyl group released as CO2. Insect Biochem Mol Biol 26:203–208

    Article  CAS  Google Scholar 

  • Nelson DR (1993) Methyl-branched lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry, and biology. University of Nebraska Press, Lincoln, pp 271–315

    Google Scholar 

  • Nelson DR, Blomquist GJ (1995) Insect waxes. In: Hamilton RJ, Christie WW (eds) Waxes: chemistry, molecular biology and functions. The Oily Press Ltd, Dundee, pp 1–90

    Google Scholar 

  • Nelson DR, Carlson DA (1986) Cuticular hydrocarbons of the tsetse flies Glossina morsitans morsitans, G. austeni, and G. pallidipes. Insect Biochem 16:403–416

    Article  CAS  Google Scholar 

  • Nelson DR, Sukkestad DR (1970) Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm. Biochemistry 9:4601–4616

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Carlson DA, Fatland CL (1988) Cuticular hydrocarbons of the tsetse flies. II. G. p. palpalis, G. p. gambiensis, G. fuscipes, G. tachinoides, and G. brevipalpis. J Chem Ecol 14:963–987

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Boomsma JJ, Oldham NJ, Petersen HC, Morgan ED (1999) Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insect Soc 46:58–65

    Article  Google Scholar 

  • Nunes TM, Turatti IC, Lopes NP, Zucchi R (2009) Chemical signals in the stingless bees, Frieseomelitta varia, indicate caste, gender, age, and reproductive status. J Chem Ecol 35:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Page M, Nelson LJ, Haverty MI, Blomquist GJ (1990) Cuticular hydrocarbons as chemotaxonumic characters for bark beetles: Dendroctonus ponderosae, D. jeffreyi, D. brevicomis, and D. frontalis (Coleoptera:Scolytidae). Ann Entomol Soc Am 83:892–901

    Article  CAS  Google Scholar 

  • Page M, Nelson LJ, Blomquist GJ, Seybold SJ (1997) Cuticular hydrocarbons as chemosystematic characters of pine engraver beetles (Ips spp.) (Coleoptera: Scolytidae) in the Grandicollis subgeneric group. J Chem Ecol 23:1053–1099

    Article  CAS  Google Scholar 

  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Lyons SK, McClain CR, McShea D, Navack-Gottshall PM (2009) Two phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci U S A 106:24–27

    Article  CAS  PubMed  Google Scholar 

  • Pechal JL, Moore HE, Drijfhout F, Benbow ME (2014) Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology. Forensic Sci Int 245:65–71

    CAS  PubMed  Google Scholar 

  • Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B 266:1323–1327

    Article  CAS  Google Scholar 

  • Peng C, Bartelt RJ, Weiss MJ (1999) Male crucifer flea beetles produce an aggregation pheromone. Physiol Entomol 24:98–99

    Article  Google Scholar 

  • Peterson MS, Dobler S, Larson EL, Juárez D, Schlarbaum T, Monsen KJ, Francke W (2007) Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:87–96

    Article  CAS  Google Scholar 

  • Provost E, Rivière G, Roux M, Bagnéres A-G, Clément JL (1994) Cuticular hydrocarbons whereby Messor barbarus ant workers putatively discriminate between monogynous and polygynous colonies. Are workers labeled by queens? J Chem Ecol 20:2895–3003

    Article  Google Scholar 

  • Qiu Y, Tittiger C, Wicker-Thamas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen F (2012) An insect-specific P450 oxidative decabonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ (1994) Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci U S A 91:10000–10004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JR, Quilici DR, Blomquist GJ, Reitz RC (1995) Proposed mechanism for the cytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in the house fly, Musca domestica. Biochemistry 34:16221–16227

    Article  CAS  PubMed  Google Scholar 

  • Reed JR, Hernandez P, Blomquist GJ, Feyereisen R, Reitz RC (1996) Hydrocarbon biosynthesis in the housefly, Musca domestica: substrate specificity and cofactor requirement of P450hyd. Insect Biochem Mol Biol 26:267–276

    Article  CAS  Google Scholar 

  • Roux E, Sreng L, Provost E, Roux M, Clement JL (2002) Cuticular hydrocarbon profiles of dominant versus subordinate male Nauphoeta cinerea cockroaches. J Chem Ecol 28:1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Roux O, Gers C, Legal L (2008) Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 22:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rutledge CE, Silk PJ, Mayo P (2014) Use of contact cues in prey discrimination by Cerceris fumipennis. Entomol Exp Appl 2:93–105

    Article  CAS  Google Scholar 

  • Sakuradani E, Zhao L, Haslam TM, Kunst L (2013) The CER22 gene required for the synthesis cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. Planta 237:731–738

    Article  CAS  PubMed  Google Scholar 

  • Savarit F, Sureau G, Cobb M, Ferveur J-F (1999) Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc Natl Acad Sci U S A 96:9015–9020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer A, Rude MA, Xuezhi L, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  • Sevala VL, Bagnères A-G, Kuenzli M, Blomquist GJ, Schal C (2000) Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. J Chem Ecol 26:765–789

    Article  CAS  Google Scholar 

  • Silberbush A, Markman S, Lewinsohn E, Bar E, Cohen JE, Blaustein L (2010) Predator-released hydrocarbons repel oviposition by a mosquito. Ecol Lett 13:1129–1138

    Article  PubMed  Google Scholar 

  • Silhacek DL, Mayer MS, Carlson DA, James JD (1972) Chemical classification of a male house fly attractant. J Insect Physiol 18:43–51

    Article  CAS  Google Scholar 

  • Silk PJ, Ryall K, Lyons DB, Sweeny J, Wu J (2009) A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Naturwissenschaften 96:601–608

    Article  CAS  PubMed  Google Scholar 

  • Silk PJ, Sweeny J, Wu J, Sopow S, Mayom PD, Magee D (2011) Contact sex pheromones identified for two species of longhorned beetles (Coleoptera: Cerambycidae) Tetropium fuscum and T. cinnamopterum in the subfamily Spondylidinae. Environ Entomol 40:714–726

    Article  CAS  PubMed  Google Scholar 

  • Singer TL, Espelie KE (1996) Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera: Vespidae). J Insect Behav 9:857–870

    Article  Google Scholar 

  • Sledge MJ, Moneti G, Pieraccini G, Turillazzi S (2000) Use of solid phase microextraction in the investigation of chemical communication in social wasps. J Chromatogr A 873:73–77

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Hölldobler B, Liebig J (2008) Hydrocarbon signals explain the pattern of worker and egg policing in the ant Aphaenogaster cockerelli. J Chem Ecol 34:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • South A, LeVan K, Leombruni L, Orians CM, Lewis AM (2008) Examining the role of cuticular hydrocarbons in firefly species recognition. Ethology 114:916–924

    Article  Google Scholar 

  • Steiner S, Hermann N, Ruther J (2006) Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32:1687–1702

    Article  CAS  PubMed  Google Scholar 

  • Stoffolano JG, Schauber E, Yin C, Tillman JA, Blomquist GJ (1997) Cuticular hydrocarbons and their role in copulatory behavior in Phormia regina. J Insect Physiol 43:1065–1076

    Article  CAS  PubMed  Google Scholar 

  • Sugeno W, Hori M, Matsuda K (2006) Identification of the contact sex pheromone of Gastrophysa atrocyanea (Coleoptera: Chrysomelidae). Appl Entomol Zool 41:269–276

    Article  CAS  Google Scholar 

  • Syvertsen T, Jackson L, Blomquist GJ, Vinson S (1995) Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J Chem Ecol 21:1971–1989

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Gassa A (1995) Roles of cuticular hydrocarbons in intra-and interspecific recognition behavior of two Rhinotermitidae species. J Chem Ecol 21:1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Tebayashi S, Hirai N, Suzuki T, Maysuyama S, Nakakita H, Nemoto T, Nakanishi H (1998) Indentification of (+)-acoradiene as an aggregation pheromone for Gnatocerus cornutus (F). J Stored Prod Res 34:99–106

    Article  CAS  Google Scholar 

  • Teerawanichpan P, Robertson AJ, Qiu X (2010) A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem Mol Biol 40:641–649

    Article  CAS  PubMed  Google Scholar 

  • Tentschert J, Bestmann HJ, Heinze J (2002) Cuticular compounds of workers and queens in two Leptothorax ant species – a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecology 12:15–21

    Article  CAS  Google Scholar 

  • Tillman-Wall JA, Vanderwel D, Kuenzli ME, Reitz RC, Blomquist GJ (1992) Regulation of sex pheromone biosynthesis in the housefly, Musca domestica: relative contribution of the elongation and reductive step. Arch Biochem Biophys 299:92–99

    Article  CAS  PubMed  Google Scholar 

  • Tóth M, Csonka É, Bartelt RJ, Cossé AA, Zilkowski BW, Muto S-E, Mori K (2005) Pheromonal activity of compounds identifies from male Phyllotreta cruciferae: field tests of racemic mixtures, pure entantiomers, and combinations with allyl isothiocyanate. J Chem Ecol 31:2705–2720

    Article  PubMed  CAS  Google Scholar 

  • Turillazzi S, Sledge MF, Dani FR, Cervo R, Massolo A, Fondelli L (2000) Social hackers: integration in the host chemical recognition system by a paper wasp social parasite. Naturwissenschaften 87:172–176

    Article  CAS  PubMed  Google Scholar 

  • Uebel EC, Sonnet PE, Miller RW, Beroza M (1975) Sex pheromone of the face fly, Musca autumnalis De Geer (Diptera: Muscidae). J Chem Ecol 1:195–202

    Article  CAS  Google Scholar 

  • van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243

    Chapter  Google Scholar 

  • Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bes, and termites. Westview Press, Boulder, pp 79–103

    Google Scholar 

  • Vander Meer RK, Wojcik DP (1982) Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808

    Article  CAS  Google Scholar 

  • Vander Meer RK, Jouvenaz DP, Wojcik DP (1989) Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J Chem Ecol 15:2247–2261

    Article  CAS  PubMed  Google Scholar 

  • Vásquez GM, Schal C, Silverman J (2009) Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. J Chem Ecol 35:922–932

    Article  PubMed  CAS  Google Scholar 

  • Vaz AH, Blomquist GJ, Reitz RC (1988) Characterization of the fatty acyl elongation reactions involved in hydrocarbon biosynthesis in the housefly, Musca domestica L. Insect Biochem 18:177–184

    Article  CAS  Google Scholar 

  • Wagner D, Brown MJF, Broun P, Cuevas W, Moses LE, Chao DL, Gordon DM (1998) Task related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J Chem Ecol 24:2021–2037

    Article  CAS  Google Scholar 

  • Wheeler CA, Cardé RT (2014) Following in their footprints: cuticular hydrocarbons as overwintering aggregation site markers in Hippodamia convergens. J Chem Ecol 40:418–428

    Article  CAS  PubMed  Google Scholar 

  • Wicker-Thomas C (2007) Pheromonal communication involved in courtship behavior in Diptera. J Insect Physiol 53:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Wicker-Thomas C, Chertemps T (2010) Molecular biology and genetics of hydrocarbon production. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 53–74

    Chapter  Google Scholar 

  • Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B, Rubin T, Parvy J-P, Jacques Montagne J (2015) Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 56:2094–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior, 2nd edn. Cambridge University Press, Cambridge, p 419

    Google Scholar 

  • Xu H, Ye GY, Xu Y, Hu C, Zhu GH (2014) Age–dependent changes in cuticular hydrocarbons of larvae in Aldrichina grahami (Aldrich) (Diptera: Calliphoridae). Forensic Sci Int 242:236–241

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Xue HJ, Song KQ, Liu J, Li WZ, Nie RE, Yang XK (2014) Male mate recognition via cuticular hydrocarbons facilitates sexual isolation between sympatric leaf beetle sister species. J Insect Physiol 70:15–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Blomquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ginzel, M.D., Blomquist, G.J. (2016). Insect Hydrocarbons: Biochemistry and Chemical Ecology. In: Cohen, E., Moussian, B. (eds) Extracellular Composite Matrices in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-40740-1_7

Download citation

Publish with us

Policies and ethics