Skip to main content

Insect Silks and Cocoons: Structural and Molecular Aspects

  • Chapter
  • First Online:
Extracellular Composite Matrices in Arthropods

Abstract

In this chapter, we extensively describe insect-secreting silk proteins. Silk proteins are produced in the labial glands (functioning as silk glands), from which they are then secreted, which is a characteristic feature of the orders Trichoptera, Lepidoptera, and some other Holometabola insects.We first describe lepidopteran silk formation and describe how the two types of fibroin (fibroin heavy chain: H-fibroin and fibroin light chain: L-fibroin) observed in non-saturniid moths, represented by Bombyx mori. Specifically, we present how the two types of fibroins, which are linked by disulfide bonds, and P25 or fibrohexamerin as a chaperone) contribute to silk fiber organization. Saturniidae moths, which produce only one type of fibroin, are also discussed here about their silk formation. Following the description of lepidopteran silk fiber proteins, we present recent progress in the study of sericin proteins of B. mori and other lepidopteran. Sericins wrap silk fibers to seal two silk filaments together like glue. We also present the differences in expression patterns and gene regulation observed in the silk glands of B. mori and Samia ricini. Then, we comprehensively summarize the features of hornet and trichopteran silks different from lepidopterans. According to the current understanding, these species produce no sericin-like proteins. The principal molecular structure of hornet silk is α-helices, frequently in a coiled-coil conformation, a molecular structure distinct from the β-sheet structures that dominate the silks of lepidopterans. Finally, we describe the present status of transgenic technology that is being used to modify fibroins in order to add features that are lacking in the host.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-40740-1_18

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-40740-1_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akai H (1976) Surface structure of insects. University of Tokyo Press, Tokyo (Japanese with English explanation of figures)

    Google Scholar 

  • Atkins EDT (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24:139–141

    Article  CAS  Google Scholar 

  • Bai X, Sakaguchi M, Yamaguchi Y, Ishihara S, Tsukada M, Hirabayashi K, Ohkawa K, Nomura T, Arai R (2015) Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata. Biochem Biophys Res Commun 464:814–819

    Article  CAS  PubMed  Google Scholar 

  • Campbell PM, Trueman HE, Zhang Q, Kojima K, Kameda T, Sutherland TD (2014) Cross-linking in the silks of bees, ants and hornets. Insect Biochem Mol Biol 48:40–45

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Cheng T, Wu Y, Hu W, Long R, Liu C, Zhao P, Xia Q (2015) Transcriptomic analysis of the anterior silk gland in the domestic silkworm (Bombyx mori) – insight into the mechanism of silk formation and spinning. PLoS One 10:e0139424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng T, Fu B, Wu Y, Long R, Liu C, Xia Q (2015) Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina. PLoS One 10:e0122837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevillard M, Couble P, Prudhomme JC (1986) Complete nucleotide sequence of the gene encoding the Bombyx mori silkprotein P25 and predicted amino acid sequence of the protein. Nucleic Acids Res 14:6341–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin MA, Mita K, Sehnal F, Hayashi CY (2010) Molecular evolution of lepidopteran silk proteins: insights from the ghost moth, Hepialus californicus. J Mol Evol 70:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couble P, Michaille JJ, Garel A, Couble ML, Prudhomme JC (1987) Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silkgland. Dev Biol 124:431–440

    Article  CAS  PubMed  Google Scholar 

  • Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267

    Article  CAS  PubMed  Google Scholar 

  • Cramer E (1865) Über die bestandtheile der seide. J Prakt Chem 96:76–98

    Google Scholar 

  • Dong Z, Zhao P, Wang C, Zhang Y, Chen J, Wang X, Lin Y, Xia Q (2013) Comparative proteomics reveal diverse functions and dynamic changes of Bombyx mori silk proteins spun from different development stages. J Proteome Res 12:5213–5222

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Dai F, Ren Y, Liu H, Chen L, Yang P, Liu Y, Li X, Wang W, Xiang H (2015) Comparative transcriptome analyses on silk glands of six silkmoths imply the genetic basis of silk structure and coloration. BMC Genomics 16:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang SM, Hu BL, Zhou QZ, Yu QY, Zhang Z (2015) Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms. BMC Genomics 16:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedič R, Zurovec M, Sehnal F (2003) Correlation between fibroin amino acid sequence and physical silk properties. J Biol Chem 278:35255–35264

    Article  PubMed  CAS  Google Scholar 

  • Friedlander TP, Horst KR, Regier JC, Mitter C, Peigler RS, Fang QQ (1998) Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturniidae). Mol Phylogenet Evol 9:131–140

    Article  CAS  PubMed  Google Scholar 

  • Fukuta M, Matsuno K, Hui C, Nagata T, Takiya S, Xu PX, Ueno K, Suzuki Y (1993) Molecular cloning of a POU domain-containing factor involved in the regulation of the Bombyx sericin-1 gene. J Biol Chem 268:19471–19475

    CAS  PubMed  Google Scholar 

  • Gamo T (1973) Genetically different components of fibroin and sericin in the mutants, Nd and Nd-s of the silkworm Bombyx mori. Jpn J Genet 48:99–104

    Article  Google Scholar 

  • Gamo T (1982) Genetic variants of the Bombyx mori silkworm encoding sericin proteins of different lengths. Biochem Genet 20:165–177

    Article  CAS  PubMed  Google Scholar 

  • Garel A, Deleage G, Prudhomme JC (1997) Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochem Mol Biol 27:469–477

    Article  CAS  PubMed  Google Scholar 

  • Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Mita K, Arunkumar KP, Nagaraju J (2015) Molecular architecture of silkfibroin of Indian golden silkmoth, Antheraea assama. Sci Rep 5:12706. doi:10.1038/srep12706

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Terada D, Bintang A, Honda T, Yoshikawa C, Teramoto H, Kameda T, Tamada Y, Kobayashi H (2011) Influence of sterilisations on silk protein-based materials. Bioins Biomim Nan 1:195–199

    Google Scholar 

  • Hayashi T, Nagai Y (1980) The anomalous behavior of collagen peptides on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is due to the low content of hydrophobic amino acid residues. J Biochem 87:803–808

    Article  CAS  PubMed  Google Scholar 

  • He YX, Zhang NN, Li WF, Jia N, Chen BY, Zhou K, Zhang J, Chen Y, Zhou CZ (2012) N-Terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. J Mol Biol 418:197–207

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Lee J, Goo T, Yun E, Lee K, Kim Y, Jin B, Lee S, Kim K, Kang S, Suh D (2001) Cloning of the fibroin gene from the oak silkworm, Antheraea yamamai and its complete sequence. Biotechnol Lett 23:1321–1326

    Article  CAS  Google Scholar 

  • Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J, Tomita M (2009) Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–5820

    Article  CAS  PubMed  Google Scholar 

  • Iizuka T, Sezutsu H, Tatematsu KI, Kobayashi I, Yonemura N, Uchino K, Nakajima K, Kojima K, Takabayashi C, Machii H, Yamada K, Kurihara H, Asakura T, Nakazawa Y, Miyawaki A, Karasawa S, Kobayashi H, Yamaguchi J, Kuwabara N, Nakamura T, Yoshii K, Tamura T (2013) Colored fluorescent silk made by transgenic silkworms. Adv Funct Mater 23:5232–5239

    Article  CAS  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa E, Suzuki Y (1985) Tissue- and stage-specific expression of sericin genes in the middle silk gland of Bombyx mori. Dev Growth Differ 27:73–82

    Article  CAS  Google Scholar 

  • Jin X, Zhang J, Gao W, Li J, Wang X (2014) Cocoon of the silkworm Antheraea pernyi as an example of a thermally insulating biological interface. Biointerphases 9:031013

    Article  PubMed  CAS  Google Scholar 

  • Kameda T (2015) Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free. Biopolymers 103:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Aratani E (2011) Production and characterizations of tubes from hornet (Vespa) silk. J Insect Biotech Seric 80:109–116

    Google Scholar 

  • Kameda T, Zhang Q (2014) Dissolution of hornet silk in aqueous solution of calcium chloride. J Silk Sci Tech Jpn 22:109–116

    Google Scholar 

  • Kameda T, Kojima K, Miyazawa M, Fujiwara S (2005) Film formation and structural characterization of silk of the hornet Vespa simillima xanthoptera Cameron. Z Naturforsch C J Biosci 60:906–914

    CAS  Google Scholar 

  • Kameda T, Kojima K, Togawa E, Sezutsu H, Zhang Q, Teramoto H, Tamada Y (2010) Drawing-induced changes in morphology and mechanical properties of hornet silk gel films. Biomacromolecules 11:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Walker AA, Sutherland TD (2014) Evolution and application of coiled silks from insects. In: Asakura T, Miller T (eds) Biotechnology of silk, vol 5. Springer, Dordrecht, pp 87–106

    Chapter  Google Scholar 

  • Kenchington W (1972) Variations in silk gland morphology among sawfly larvae (Hymenoptera: Symphyta). J Entomol Ser A Gen Entomol 46(2):111–116

    Article  Google Scholar 

  • Kenchington W (1984) Biological and chemical aspects of silks and silk-like materials produced by arthropods. S Pac J Nat Sci 5:10–45

    Google Scholar 

  • Kikuchi Y, Mori K, Suzuki S, Yamaguchi K, Mizuno S (1992) Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene 110:151–158

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  • Kimoto M, Kitagawa T, Kobayashi I, Nakata T, Kuroiwa A, Takiya S (2012) Inhibition of the binding of MSG-intermolt-specific complex, MIC, to the sericin-1 gene promoter and sericin-1 gene expression by POU-M1/SGF-3. Dev Genes Evol 222:351–359

    Article  CAS  PubMed  Google Scholar 

  • Kimoto M, Tsubota T, Uchino K, Sezutsu H, Takiya S (2014) Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori. Dev Biol 386:64–71

    Article  CAS  PubMed  Google Scholar 

  • Kimoto M, Tsubota T, Uchino K, Sezutsu H, Takiya S (2015) LIM-hoeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori. Insect Biochem Mol Biol 56:29–35

    Article  CAS  PubMed  Google Scholar 

  • Kirshboim S, Ishay JS (2000) Silk produced by hornets: thermophotovoltaic properties – A review. Comp Biochem Phys A 127:1–20

    Article  CAS  Google Scholar 

  • Kjer KM, Blahnik RJ, Holzenthal RW (2002) Phylogeny of caddisflies (Insecta, Trichoptera). Zool Scr 31:83–91

    Google Scholar 

  • Kludkiewicz B, Takasu Y, Fedic R, Tamura T, Sehnal F, Žurovec M (2009) Structure and expression of the silk adhesive protein Ser2 in Bombyx mori. Insect Biochem Mol Biol 39:938–946

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Kuwano Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y (2007a) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 71:2943–2951

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Kuwana Y, Sezutsu H (2007b) NMR analysis of silk produced by transgenic silkworm which expresses spider fiber protein in silk. Kobunshi Ronbunshu 64:817–819

    Article  CAS  Google Scholar 

  • Kokubo H, Xu PX, Xu X, Matsunami K, Suzuki Y (1997) Spatial and temporal expression pattern of POU-M1/SGF-3 in Bombyx mori embryogenesis. Dev Genes Evol 206:494–502

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Sezutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355:976–980

    Article  CAS  PubMed  Google Scholar 

  • Kusuda J, Tazima Y, Onimaru K, Ninaki O, Suzuki Y (1986) The sequence around the 5′ end of the fibroin gene from the wild silkworm, Bombyx mandarina, and comparison with that of the domesticated species, B. mori. Mol Gen Genet 203:359–364

    Article  CAS  Google Scholar 

  • Kuwana Y, Sezutsu H, Nakajima K, Tamada Y, Kojima K (2014) High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein. PLoS One 9:e105325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Ye L, Che J, Song J, You Z, Yun K, Wang S, Zhong B (2015) Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 126:109–120

    Article  CAS  PubMed  Google Scholar 

  • Lucas F, Rudall KM (1968) Extracellular fibrous proteins: the silks. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry. Elsevier, Amsterdam, pp 475–558

    Google Scholar 

  • Ma S, Shi R, Wang X, Liu Y, Chang J, Gao J, Lu W, Zhang J, Zhao P, Xia Q (2014) Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Sci Rep 4:6867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ Jr, Jarvis DL (2015) Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. Insect Biochem Mol Biol 65:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mach V, Takiya S, Ohno K, Handa H, Imai T, Suzuki Y (1995) Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem 270:9340–9346

    Article  CAS  PubMed  Google Scholar 

  • Machida J (1926) Studies on the silk substances secreted by Bombyx mori. Bull Sericult Exp Stn 7:241–262 (Japanese with English summary)

    Google Scholar 

  • Maning RF, Gage LP (1980) Internal structure of the silk fibroin gene of Bombyx mori II Remarkable polymorphism of the organization of crystalline and amorphous coding sequences. J Biol Chem 255:9451–9457

    Google Scholar 

  • Matsunami K, Kokubo H, Ohno K, Suzuki Y (1998) Expression pattern analysis of SGF-3/POU-M1 in relation to sericin-1 gene expression in the silk gland. Dev Growth Differ 40:591–597

    Article  CAS  PubMed  Google Scholar 

  • Michaille JJ, Garel A, Prudhomme JC (1990) Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86:177–184

    Article  CAS  PubMed  Google Scholar 

  • Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38:583–592

    Article  CAS  PubMed  Google Scholar 

  • Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa K, Miura Y, Nomura T, Arai R, Abe K, Tsukada M, Hirabayashi K (2012) Isolation of silk proteins from a caddisfly larva, Stenopsyche marmorata. J Fiber Bioeng Inform 5:125–137

    Google Scholar 

  • Ohkawa K, Miura Y, Nomura T, Arai R, Abe K, Tsukada M, Hirabayashi K (2013) Long-range periodic sequence of the cement/silk protein of Stenopsyche marmorata: purification and biochemical characterization. Biofouling 29:357–367

    Article  CAS  PubMed  Google Scholar 

  • Ohno K, Sawada J, Takiya S, Kimoto M, Matsumoto A, Tsubota T, Uchino K, Hui C, Sezutsu H, Handa H, Suzuki Y (2013) Silk gland factor-2, involved in fibroin gene transcription, consists of LIM homeodomain, LIM-interacting, and single-stranded DNA-binding proteins. J Biol Chem 288:31581–31591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima Y, Suzuki Y (1977) Cloning of the silk fibroin gene and its flanking sequences. Proc Natl Acad Sci U S A 74:5363–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto H, Ishikawa E, Suzuki Y (1982) Structural analysis of sericin genes. J Biol Chem 257:15192–15199

    CAS  PubMed  Google Scholar 

  • Prevelige PJ, Fasman GD (1989) Chou-Fasman Prediction of the secondary structure of proteins: The Chou-Fasman-Prevelige algorithm. In: Fasman GD (ed) Prediction of Protein Structure and the Principles of Protein Conformation. Plenum, New York, pp 391–416

    Chapter  Google Scholar 

  • Prudhomme JC, Couble P, Garel JP, Daillie J (1985) Silk synthesis. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology, vol 10. Pergamon, Oxford, pp 571–594

    Google Scholar 

  • Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884

    Article  CAS  PubMed  Google Scholar 

  • Royer C, Briolay J, Garel A, Brouilly P, Sasanuma S, Sasanuma M, Shimomura M, Keime C, Gandrillon O, Huang Y, Chavancy G, Mita K, Couble P (2011) Novel genes differentially expressed between posterior and median silk gland identified by SAGE-aided transcriptome analysis. Insect Biochem Mol Biol 41:118–124

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saotome T, Hayashi H, Tanaka R, Kinugasa A, Uesugi S, Tatematsu KI, Sezutsu H, Kuwabara N, Asakura T (2015) Introduction of VEGF or RGD sequences improves revascularization properties of Bombyx mori silk fibroin produced by transgenic silkworm. J Mater Chem B 3:7109–7116

    Article  CAS  Google Scholar 

  • Sehnal F, Akai H (1990) Insect silk glands: their types, development and function, and effects of environmental factors and morphogenetic, hormones on them IInt. J Wild Silkmoth Silk 7:25–30

    Google Scholar 

  • Sehnal F, Sutherland TD (2008) Silks produced by insect labial glands. Prion 2:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehnal F, Žurovec M (2004) Construction of silk fiber core in Lepidoptera. Biomacromolecules 497:666–667

    Article  CAS  Google Scholar 

  • Sezutsu H, Yukuhiro K (2000) Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol 51:329–338

    Article  CAS  PubMed  Google Scholar 

  • Sezutsu H, Yukuhiro K (2014) The complete nucleotide sequence of the Eri-silkworm (Samia cynthia ricini) fibroin gene. J Insect Biotec Sericol 83:59–70

    Google Scholar 

  • Sezutsu H, Kajiwara H, Kojima K, Mita K, Tamura T, Tamada Y, Kameda T (2007) Identification of four major hornet silk genes with a complex of alanine-rich and serine-rich sequences in Vespa simillima xanthoptera Cameron. Biosci Biotechnol Biochem 71:2725–2734

    Article  CAS  PubMed  Google Scholar 

  • Sezutsu H, Tamura T, Yukuhiro K (2008a) Leucine-rich fibroin gene of the Japanese wild silkmoth, Rhodinia fugax Lepidoptera (Saturniidae). Eur J Entomol 105:561–566

    Article  CAS  Google Scholar 

  • Sezutsu H, Tamura T, Yukuhiro K (2008b) Uniform size of leucine-rich repeats in a wild silk moth Saturnia japonica (Lepidoptera Saturniidae) fibroin. Int J Wild Silkmoth Silk 13:53–60

    Google Scholar 

  • Sezutsu H, Uchino K, Kobayashi I, Tamura T, Yukuhiro K (2010) Extensive sequence rearrangements and length polymorphism in fibroin genes in the wild silkmoth, Antheraea yamamai (Lepidoptera, Saturniidae). Int J Wild Silkmoth Silk 15:35–50

    Google Scholar 

  • Shi J, Lua S, Du N, Liu X, Song J (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828

    Article  CAS  PubMed  Google Scholar 

  • Shonozaki N, Machida Y, Nakayama M, Doira H, Watanabe T (1980) Linkage analyses of sericins. Kyushusanshi 11:62

    Google Scholar 

  • Sima Y, Chen M, Yao R, LiY LT, Jin X, Wang L, Su J, Li X, Liu Y (2013) The complete mitochondrial genome of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae). Gene 526:309–317

    Article  CAS  PubMed  Google Scholar 

  • Simmons A, Ray E, Jelinski LW (1994) Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27:5235–5237

    Article  CAS  Google Scholar 

  • Sprague KU (1975) The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry 14:925–931

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ, Wang CS (2010) Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromolecules 11:969–974

    Google Scholar 

  • Su H, Cheng Y, Wang Z, Li Z, Stanley D, Yang Y (2015) Silk gland gene expression during larval-pupal transition in the cotton leaf roller Sylepta derogata (Lepidoptera: Pyralidae). PLoS One 10:e0136868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, Haritos VS (2006) A highly divergent gene cluster in honey bees encodes a novel silk family. Genome Res 16:1414–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS (2007) Conservation of essential design features in coiled coil silks. Mol Biol Evol 24:2424–2432

    Google Scholar 

  • Sutherland TD, Peng YY, Trueman HE, Weisman S, Okada S, Walker AA, Sriskantha A, White JF, Huson MG, Werkmeister JA, Glattauer V, Stoichevska V, Mudie ST, Haritos VS, Ramshaw JAM (2013) A new class of animal collagen masquerading as an insect silk. Sci Rep 3:2864. doi:10.1038/srep02864

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Tsuda M, Takiya S, Hirose S, Suzuki E, Kameda M, Ninaki O (1986) Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems. Proc Natl Acad Sci U S A 83:9522–9526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada M, Tatematsu KI, Ishii-Watabe A, Harazono A, Takakura D, Hashii N, Sezutsu H, Kawasaki N (2015) Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). Mabs 7:1138–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu Y, Yamada H, Tsubouchi K (2002) Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 66:2715–2718

    Article  CAS  PubMed  Google Scholar 

  • Takasu Y, Yamada H, Saito H, Tsubouchi K (2005) Characterization of Bombyx mori sericins by the partial amino acid sequences. J Insect Biotec Seric 74:103–109

    CAS  Google Scholar 

  • Takasu Y, Yamada H, Tsubouchi K (2006) The silk sericin component with low crystallinity. Sanshi-Konchu Biotec 75:133–139

    CAS  Google Scholar 

  • Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem Mol Biol 37:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Takasu Y, Hata T, Uchino K, Zhang Q (2010) Identification of Ser2 proteins as major sericin components in the non-cocoon silk of Bombyx mori. Insect Biochem Mol Biol 40:339–344

    Article  CAS  PubMed  Google Scholar 

  • Takiya S, Kokubo H, Suzuki Y (1997) Transcriptional regulatory elements in the upstream and intron of the fibroin gene bind three specific factors POU-M1, Bm Fkh and FMBP-1. Biochem J 321:645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiya S, Ishikawa T, Ohtsuka K, Nishita Y, Suzuki Y (2005) Fibroin-modulator-binding protein-1 (FMBP-1) contains a novel DNA-binding domain, repeats of the score and three amino acid peptide (STP), conserved from Caenorhabditis elegans to humans. Nucleic Acid Res 33:786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiya S, Inoue H, Kimoto M (2011) Novel enhancer and promoter elements indispensable for the tissue-specific expression of the sericin-1 gene of the silkworm Bombyx mori. Insect Biochem Mol Biol 41:592–601

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Kubota T (1989) A determination of molecular weight of fibroin polypeptides in the saturnid silkworms, Antheraea yamamai, Antheraea pernyi and Philosamia cynthia ricini by SDS PAGE. In: Akai H, Wu ZS (eds) Wild silkmoth’88. International Society for Wild Silkmoths, Tokyo, pp 67–72

    Google Scholar 

  • Tamura T, Inoue H, Suzuki Y (1987) The fibroin genes of the Antheraea yamamai and Bombyx mori are different in the core regions but reveal a striking sequences similarity in their 5′-ends and 5′-flanking regions. Mol Gen Genet 206:189–195

    Article  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mizuno S (2001) Homologues of fibroin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai. Insect Biochem Mol Biol 31:665–667

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999a) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H–L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29:269–276

    Google Scholar 

  • Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999b) Determination of the site of disulfide linkage between heavy and light chains of silkfibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    Article  CAS  PubMed  Google Scholar 

  • Tashiro Y, Otsuki E (1970) Studies on the posterior silk gland of the silkworm Bombyx mori IV. Ultracentrifugal analyses of native silk proteins, especially fibroin extracted from the middle silk gland of the mature silkworm. J Cell Biol 46:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatematsu KI, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19:473–487

    Article  CAS  PubMed  Google Scholar 

  • Teulé F, Miao YG, Sohn BH, Kim YS, Hull JJ, Fraser MJ Jr, Lewis RV, Jarvis DL (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109:923–928

    Article  PubMed  PubMed Central  Google Scholar 

  • The International silkworm genome consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Article  CAS  Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Suzuki Y (1979) The DNA sequence of Bombyx mori fibroin gene including the 5′ flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell 18:591–600

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui R, Shonozaki N, Machida Y, Watanabe T (1979) Separation of sericins. Kyushusanshi 10:65

    Google Scholar 

  • Wang HG, Fraser MJ (1993) TTAA serves as the target site for TFP3 lepidopteran transposon insertions in both nuclear polyhedrosis virus and Trichoplusia ni genomes. Insect Mol Biol 1:109–116

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sanai T, Wen H, Zao T, Nakagaki M (2010) Characterization of unique heavy chain fibroin filaments spun underwater by the caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae). Mol Biol Rep 37:2885–2892

    Google Scholar 

  • Wang CS, Ashton NN, Weiss RB, Stewart RJ (2014) Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis. Insect Biochem Mol Biol 54:69–79

    Google Scholar 

  • Wang CS, Pan H, Weerasekare GM, Stewart RJ (2015) Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk. J R Soc Interface 12(112). doi:10.1098/rsif.2015.0710

    Google Scholar 

  • Warwicker JO (1960) Comparative studies of fibroins II. The crystal structures of various fibroins. J Mol Biol 2:350–362

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kamei K, Sumida M (2007) Sericin digestion by fibroinase, a cathepsin L-like cysteine proteinase, of Bombyx mori silk gland. J Insect Biotec Seric 76:9–15

    CAS  Google Scholar 

  • Weisman S, Trueman HE, Mudie ST, Church JS, Sutherland TD, Haritos VS (2008) An unlikely silk: The composite material of green lacewing cocoons. Biomacromolecules 9:3065–3306

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z, He N, Zhang L, Xiang Z (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol 8:R162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu S, He N, Zhou Y, Liu H, Zhao J, Ye C, Du Z, Pan G, Zhao A, Shao H, Zeng W, Wu P, Li C, Pan M, Li J, Yin X, Li D, Wang J, Zheng H, Wang W, Zhang X, Li S, Yang H, Lu C, Nielsen R, Zhou Z, Wang J, Xiang Z, Wang J (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanouchi M (1922) Morphologische Beobachtung über die Seidensekretion bei der Seidenraupe. J Coll Agric Hokkaido Imp Univ 10:1–50

    CAS  Google Scholar 

  • Yonemura N, Sehnal F, Mita K, Tamura T (2006) Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7:3370–3378

    Article  CAS  PubMed  Google Scholar 

  • Yonemura N, Mita K, Tamura T, Sehnal F (2009) Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 68:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukuhiro K, Sezutsu H, Yonemura N (2014) Evolutionary divergence of lepidopteran and trichopteran fibroins. In: Asakura T, Miller T (eds) Biotechnology of silk, vol 5. Springer, Dordrecht, pp 25–48

    Chapter  Google Scholar 

  • Zaretschnaya SN (1965) Glands of caddisworms. III. Spinning glands. Plankton and benthos of inland water reservoirs. Proc Acad Sci USSR 12:293–303

    Google Scholar 

  • Zhao XM, Liu C, Li QY, Hu WB, Zhou MT, Nie HY, Zhang YX, Peng ZC, Zhao P, Xia QY (2014) Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori. PLoS One 9:e94091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou C, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li Z (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acid Res 28:2413–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Žurovec M, Sehnal F (2002) Unique molecular architecture of silkfibroin in the waxmoth, Galleria mellonella. J Biol Chem 277:22639–22647

    Article  PubMed  CAS  Google Scholar 

  • Žurovec M, Vasková M, Kodrík D, Sehnal F, Kumaran AK (1995) Light-chain fibroin of Galleria mellonella L. Mol Gen Genet 247:1–6

    Article  PubMed  Google Scholar 

  • Žurovec M, Kodrík D, Yang C, Sehnal F, Scheller K (1998) The P25 component of galleria silk. Mol Gen Genet 257:264–270

    Article  PubMed  Google Scholar 

  • Zurovec M, Kludkiewicz B, Fedic R, Sulitkova J, Mach V, Kucerova L, Sehnal F (2013) Functional conservation and structural diversification of silk sericins in two moth species. Biomacromolecules 14:1859–1866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hitoshi Saitou for his permitting us to use his photograph showing 22 Saturniidae cocoons. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yukuhiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yukuhiro, K., Sezutsu, H., Tsubota, T., Takasu, Y., Kameda, T., Yonemura, N. (2016). Insect Silks and Cocoons: Structural and Molecular Aspects. In: Cohen, E., Moussian, B. (eds) Extracellular Composite Matrices in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-40740-1_14

Download citation

Publish with us

Policies and ethics