Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 244))

Abstract

The field of transportation belongs to the most important areas of logistics. Transportation problems occur in various variations and complexity and require a careful planning due to their significance and the need to solve them efficiently, i.e. with high quality and low costs. In general, transportation planning requires to determine the kind and quantity of the goods that are shipped, from where to where, at which time and by using which resources, in particular by which vehicles. The determination of a specific path or route belongs to the field of transportation planning as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, Z. H. (2010). Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. International Journal of Biometrics and Bioinformatics (IJBB), 3(6), 96–105.

    Google Scholar 

  • Albayrak, M., & Allahverdi, N. (2011). Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms. Expert Systems with Applications, 38(3), 1313–1320.

    Article  Google Scholar 

  • Anbuudayasankar, S. P., Ganesh, K., & Mohapatra, S. (2014). Models for practical routing problems in logistics. Cham: Springer.

    Book  Google Scholar 

  • Applegate, D., Cook, W., & Rohe, A. (2003). Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal on Computing, 15(1), 82–92.

    Article  Google Scholar 

  • Beasley, J. E. (2014). OR-library. Retrieved March 12, 2016, from http://people.brunel.ac.uk/~mastjjb/jeb/info.html

  • Braun, H. (1991). On solving travelling salesman problems by genetic algorithms. In H.-P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature (pp. 129–133). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bryan, J., & McIntire, J. (2015). Leveraging distributed metaheuristics to balance flexibility and complexity. Invited Talk at IEEE TENCON 2015: Technical Track 11, IEEE, New York.

    Google Scholar 

  • Buriol, L., França, P. M., & Moscato, P. (2004). A new memetic algorithm for the asymmetric traveling salesman problem. Journal of Heuristics, 10(5), 483–506.

    Article  Google Scholar 

  • Burkard, R. E., & Cela, E. (1999). Linear assignment problems and extensions. In D.-Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial optimization (pp. 75–149). New York: Springer.

    Chapter  Google Scholar 

  • Charon, I., & Hudry, O. (2000). Application of the noising method to the travelling salesman problem. European Journal of Operational Research, 125(2), 266–277.

    Article  Google Scholar 

  • Chatterjee, S., Carrera, C., & Lynch, L. A. (1996). Genetic algorithms and traveling salesman problems. European Journal of Operational Research, 93(3), 490–510.

    Article  Google Scholar 

  • Créput, J. C., Hajjam, A., Koukam, A., & Kuhn, O. (2012). Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem. Journal of Combinatorial Optimization, 24(4), 437–458.

    Article  Google Scholar 

  • Créput, J. C., & Koukam, A. (2009). A memetic neural network for the Euclidean traveling salesman problem. Neurocomputing, 72(4), 1250–1264.

    Article  Google Scholar 

  • Crisan, G. C., & Nechita, E. (2008). Solving fuzzy TSP with ant algorithms. International Journal of Computers, Communications and Control, 3, 228–231.

    Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the travelling salesman problem. BioSystems, 43(2), 73–81.

    Article  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997b). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

    Article  Google Scholar 

  • Erbao, C., & Mingyong, L. (2009). A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. Journal of Computational and Applied Mathematics, 231(1), 302–310.

    Article  Google Scholar 

  • Even, S., Itai, A., & Shamir, A. (1975). On the complexity of time table and multi-commodity flow problems. 16th Annual Symposium on Foundations of Computer Science, 1975, IEEE, New York, pp. 184–193.

    Google Scholar 

  • Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with profits. Transportation Science, 39(2), 188–205.

    Article  Google Scholar 

  • Fu, L., Sun, D., & Rilett, L. R. (2006). Heuristic shortest path algorithms for transportation applications: state of the art. Computers & Operations Research, 33(11), 3324–3343.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Vigo, D. (1999). Heuristics for the traveling salesman problem with pickup and delivery. Computers & Operations Research, 26(7), 699–714.

    Article  Google Scholar 

  • Gendreau, M., Potvin, J. Y., Bräumlaysy, O., Hasle, G., & Løkketangen, A. (2008). Metaheuristics for the vehicle routing problem and its extensions: A categorized bibliography. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.), The vehicle routing problem: Latest advances and new challenges (pp. 143–16). New York: Springer.

    Chapter  Google Scholar 

  • Golden, B. L., Raghavan, S., & Wasil, E. A. (Eds.). (2008). The vehicle routing problem: latest advances and new challenges (Operations Research/Computer Science Interfaces Series, Vol. 43). New York: Springer.

    Google Scholar 

  • Grefenstette, J., et al. (1985). Genetic algorithms for the traveling salesman problem. Proceedings of the first international conference on Genetic Algorithms and Their Applications, Lawrence Erlbaum, New Jersey, pp. 160–168.

    Google Scholar 

  • Hall, A., Hippler, S., & Skutella, M. (2007). Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science, 379(3), 387–404.

    Article  Google Scholar 

  • Hanne, T., Melo, T., & Nickel, S. (2009). Bringing robustness to patient flow management through optimized patient transports in hospitals. Interfaces, 39(3), 241–255.

    Article  Google Scholar 

  • Jati, G. K., & Suyanto, S. (2011). Evolutionary discrete firefly algorithm for travelling salesman problem. In Adaptive and intelligent systems. Lecture Notes in Computer Science (Vol. 6943, pp. 393–403). Berlin and Heidelberg: Springer.

    Google Scholar 

  • Jolai, F., & Ghanbari, A. (2010). Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem. Expert Systems with Applications, 37(7), 5331–5335.

    Article  Google Scholar 

  • Jozefowiez, N., Semet, F., & Talbi, E. G. (2008). Multi-objective vehicle routing problems. European Journal of Operational Research, 189(2), 293–309.

    Article  Google Scholar 

  • Kallehauge, B., Larsen, J., Madsen, O. B., & Solomon, M. M. (2005). Vehicle routing problem with time windows. In G. Desaulniers, J. Desrosiers, & M. M. Solomon (Eds.), Column generation (pp. 67–98). New York: Springer.

    Chapter  Google Scholar 

  • Karaboga, D., Gorkemli, B. (2011). A combinatorial artificial bee colony algorithm for traveling salesman problem. 2011 international symposium on Innovations in Intelligent Systems and Applications (INISTA), IEEE, Piscataway, NJ, pp. 50–53.

    Google Scholar 

  • Laporte, G., & Semet, F. (2001). Classical heuristics for the capacitated VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 109–128). Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review, 13(2), 129–170.

    Article  Google Scholar 

  • Lenstra, J. K., & Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221–227.

    Article  Google Scholar 

  • Leung, S. C., Zhou, X., Zhang, D., & Zheng, J. (2011). Extended guided tabu search and a new packing algorithm for the two-dimensional loading vehicle routing problem. Computers & Operations Research, 38(1), 205–215.

    Article  Google Scholar 

  • Li, J., Li, Y., & Pardalos, P. M. (2016). Multi-depot vehicle routing problem with time windows under shared depot resources. Journal of Combinatorial Optimization, 31(2), 515–532.

    Article  Google Scholar 

  • Li, X., Tian, P., Hua, J., & Zhong, N. (2006). A hybrid discrete particle swarm optimization for the traveling salesman problem. In T.-D. Wang, X. Li, & X. Wang (Eds.), Simulated evolution and learning (pp. 181–188). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Liong, C. Y., Wan, R. I., Khairuddin, O., & Zirour, M. (2008). Vehicle routing problem: Models and solutions. Journal of Quality Management and Analysis, 4, 205–218. Retrieved March 12, 2016, from http://pkukmweb.ukm.my/~ppsmfst/jqma/Vol4_Is1/PDF/JQMA4(1)-19-liong-drk.pdf

  • Liu, T., Jiang, Z., & Geng, N. (2014). A genetic local search algorithm for the multi-depot heterogeneous fleet capacitated arc routing problem. Flexible Services and Manufacturing Journal, 26(4), 540–564.

    Article  Google Scholar 

  • Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005). Expanding neighborhood GRASP for the traveling salesman problem. Computational Optimization and Applications, 32(3), 231–257.

    Article  Google Scholar 

  • McBride, R. D. (1998). Advances in solving the multicommodity-flow problem. Interfaces, 28(2), 32–41.

    Article  Google Scholar 

  • Mladenović, N., Urošević, D., & Ilić, A. (2012). A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem. European Journal of Operational Research, 220(1), 270–285.

    Article  Google Scholar 

  • Modares, A., Somhom, S., & Enkawa, T. (1999). A self‐organizing neural network approach for multiple traveling salesman and vehicle routing problems. International Transactions in Operational Research, 6(6), 591–606.

    Article  Google Scholar 

  • Nguyen, H. D., Yoshihara, I., Yamamori, K., & Yasunaga, M. (2007). Implementation of an effective hybrid GA for large-scale traveling salesman problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1), 92–99.

    Article  Google Scholar 

  • Oppen, J., & Løkketangen, A. (2006). The livestock collection problem. Proceedings of the 21st European conference on Operational Research.

    Google Scholar 

  • Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Discrete cuckoo search algorithm for the travelling salesman problem. Neural Computing and Applications, 24(7–8), 1659–1669.

    Article  Google Scholar 

  • Pasti, R., & De Castro, L. N. (2006). A neuro-immune network for solving the traveling salesman problem. International joint conference on Neural Networks, 2006. IJCNN’06, IEEE, Piscataway, NJ, pp. 3760–3766.

    Google Scholar 

  • Pepper, J. W., Golden, B. L., & Wasil, E. A. (2002). Solving the traveling salesman problem with annealing-based heuristics: a computational study. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 32(1), 72–77.

    Article  Google Scholar 

  • Perboli, G., Tadei, R., & Vigo, D. (2011). The two-echelon capacitated vehicle routing problem: Models and math-based heuristics. Transportation Science, 45(3), 364–380.

    Article  Google Scholar 

  • Peterson, C. (1990). Parallel distributed approaches to combinatorial optimization: Benchmark studies on traveling salesman problem. Neural Computation, 2(3), 261–269.

    Article  Google Scholar 

  • Potvin, J. Y. (1993). State-of-the-art survey—the traveling salesman problem: A neural network perspective. ORSA Journal on Computing, 5(4), 328–348.

    Article  Google Scholar 

  • Reinelt, G. (1991). TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 3(4), 376–384.

    Article  Google Scholar 

  • Ritzinger, U., Puchinger, J., & Hartl, R. F. (2016). A survey on dynamic and stochastic vehicle routing problems. International Journal of Production Research, 54(1), 215–231.

    Article  Google Scholar 

  • Shi, X. H., Liang, Y. C., Lee, H. P., Lu, C., & Wang, Q. X. (2007). Particle swarm optimization-based algorithms for TSP and generalized TSP. Information Processing Letters, 103(5), 169–176.

    Article  Google Scholar 

  • Shim, V. A., Tan, K. C., Chia, J. Y., & Chong, J. K. (2011). Evolutionary algorithms for solving multi-objective travelling salesman problem. Flexible Services and Manufacturing Journal, 23(2), 207–241.

    Article  Google Scholar 

  • Snyder, L. V., & Daskin, M. S. (2006). A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operational Research, 174(1), 38–53.

    Article  Google Scholar 

  • Solomon, M. M. (2014). VRPTW benchmark problems. Retrieved March 12, 2016, from http://w.cba.neu.edu/~msolomon/problems.htm

  • Steinhaus, M. (2015). The application of the self organizing map to the vehicle routing problem. Open Access Dissertations, University of Rhode Island, Kingston.

    Google Scholar 

  • Steinhaus, M., Shirazi, A. N., & Sodhi, M. (2015). Modified self organizing neural network algorithm for solving the vehicle routing problem. 2015 I.E. 18th International Conference on Computational Science and Engineering (CSE), IEEE, Piscataway, NJ, pp. 246–252.

    Google Scholar 

  • Stützle, T., Grün, A., Linke, S., & Rüttger, M. (2000). A comparison of nature inspired heuristics on the traveling salesman problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Parallel problem solving from nature PPSN VI (pp. 661–670). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Takaoka, T. (2013). A simplified algorithm for the all pairs shortest path problem with O(n2 log n) expected time. Journal of Combinatorial Optimization, 25(2), 326–337.

    Article  Google Scholar 

  • Teodorović, D. (1999). Fuzzy logic systems for transportation engineering: the state of the art. Transportation Research Part A: Policy and Practice, 33(5), 337–364.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: Problems, methods, and applications (Vol. 18). Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Tsai, C. F., Tsai, C. W. (2002). A new approach for solving large traveling salesman problem using evolutionary ant rules. Proceedings of the 2002 international joint conference on Neural Networks, 2002 (IJCNN’02), Vol. 2, IEEE, Piscataway, NJ.

    Google Scholar 

  • Tsai, H. K., Yang, J. M., Tsai, Y. F., & Kao, C. Y. (2004). An evolutionary algorithm for large traveling salesman problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(4), 1718–1729.

    Article  Google Scholar 

  • Tsubakitani, S., & Evans, J. R. (1998). Optimizing tabu list size for the traveling salesman problem. Computers & Operations Research, 25(2), 91–97.

    Article  Google Scholar 

  • Ulder, N. L., Aarts, E. H., Bandelt, H. J., van Laarhoven, P. J., & Pesch, E. (1991). Genetic local search algorithms for the traveling salesman problem. In H.-P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature (pp. 109–116). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Weise, T., Chiong, R., Lassig, J., Tang, K., Tsutsui, S., Chen, W., et al. (2014). Benchmarking optimization algorithms: An open source framework for the traveling salesman problem. IEEE Computational Intelligence Magazine, 9(3), 40–52.

    Article  Google Scholar 

  • Xu, J., Yan, F., & Li, S. (2011). Vehicle routing optimization with soft time windows in a fuzzy random environment. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1075–1091.

    Article  Google Scholar 

  • Yadlapalli, S., Malik, W. A., Darbha, S., & Pachter, M. (2009). A Lagrangian-based algorithm for a multiple depot, multiple traveling salesmen problem. Nonlinear Analysis: Real World Applications, 10(4), 1990–1999.

    Article  Google Scholar 

  • Zheng, Y., & Liu, B. (2006). Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm. Applied Mathematics and Computation, 176(2), 673–683.

    Article  Google Scholar 

  • Zhong, W. L., Zhang, J., & Chen, W. N. (2007). A novel discrete particle swarm optimization to solve traveling salesman problem. IEEE Congress on Evolutionary Computation, 2007. CEC 2007, IEEE, Piscataway, NJ, pp. 3283–3287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hanne, T., Dornberger, R. (2017). Transportation Problems. In: Computational Intelligence in Logistics and Supply Chain Management. International Series in Operations Research & Management Science, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-319-40722-7_3

Download citation

Publish with us

Policies and ethics