Skip to main content

Growth-Promoting Effect of NO Fumigation and Hemoglobins

  • Chapter

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Nitrogen oxide (NOx) is naturally present in the atmosphere as part of the Earth’s nitrogen cycle and has a variety of natural sources. NOx gases are formed whenever combustion occurs in the presence of nitrogen—as in an air-breathing engine; they also are produced naturally by lightning. However, also human activities such as agriculture, fossil fuel combustion, wastewater management, and industrial processes are increasing the amount of NOx in the atmosphere resulting in significant air pollution. But nitrogen is also an essential nutrient required for plant growth and development. Nitrogen can be taken up by plants through ammonium and nitrate or as nitrogen gas through plant-associated microorganisms in root nodules. Interestingly, a plant growth-promoting effect is also described for NO and NO2. In this chapter we want to highlight the positive effect of NO and NO2 on plant growth and development and on postharvest effects on fruits and flowers. Moreover, the NO-scavenging function of phytoglobins is discussed in this context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam SEH, Abdel-Banat BMA, Sakamoto A, Takahashi M, Morikawa H (2008) Effect of atmospheric nitrogen dioxide on Mulukhiya (Corchorus olitorius) growth and flowering. Am J Plant Physiol 3:180–184

    Article  Google Scholar 

  • Agren GI, Wetterstedt JA, Billberger MF (2012) Nutrient limitation on terrestrial plant growth–modeling the interaction between nitrogen and phosphorus. New Phytol 194(4):953–960. doi:10.1111/j.1469-8137.2012.04116.x

    Article  CAS  PubMed  Google Scholar 

  • Aprison MH, Burris RH (1952) Time course of fixation of N2 by excised soybean nodules. Science 115(2984):264–265. doi:10.1126/science.115.2984.264

    Article  CAS  PubMed  Google Scholar 

  • Akaike T, Maeda H (1996) Quantitation of nitric oxide using 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Methods Enzymol 268:211–221

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13(11):15193–15208. doi:10.3390/ijms131115193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inze D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282(2):1352–1358. doi:10.1074/jbc.M608931200

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210(2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Jones RL (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57(3):517–526. doi:10.1093/Jxb/Erj060

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143(3):1173–1188. doi:10.1104/pp.106.093435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136(1):2722–2733. doi:10.1104/pp.104.042812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181(5):604–611. doi:10.1016/j.plantsci.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Cristescu SM, Marchenko D, Mandon J, Hebelstrup KH, Griffith GW, Mur LAJ, Harren FJM (2013) Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives. Appl Phys B Lasers Opt 110:203–211

    Article  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588

    Article  CAS  PubMed  Google Scholar 

  • Dong YJ, Jinc SS, Liu S, Xu LL, Kong J (2014) Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress. J Soil Sci Plant Nutr 14:1–13

    CAS  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91(Spec No):173–178

    Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95(17):10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forde BG, Walch-Liu P (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32:682–693

    Article  CAS  PubMed  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398. doi:10.3389/fpls.2013.00398

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100(19):11116–11121. doi:10.1073/pnas.1434381100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419. doi:10.3389/fpls.2013.00419

    Article  PubMed  PubMed Central  Google Scholar 

  • Grun S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57(3):507–516

    Article  CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17(12):3436–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. J Nutr 130(5):1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Nitric oxide effects on photosynthetic rate, growth, and antioxidant activity in tomato. Int J Veg Sci 17:333–348

    Article  Google Scholar 

  • Haynes RJ, Goh KM (1978) Ammonium and nitrate nutrition of plants. Biol Rev 53(4):465–510. doi:10.1111/j.1469-185X.1978.tb00862.x

    Article  CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305(5692):1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Møller IM (2015) Mitochondrial signaling in plants under hypoxia: use of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer, Berlin, pp 63–77

    Chapter  Google Scholar 

  • Hebelstrup KH, Hunt P, Dennis E, Jensen SB, Jensen EO (2006) Hemoglobin is essential for normal growth of Arabidopsis organs. Physiol Plant 127(1):157–166. doi:10.1111/j.1399-3054.2006.00653.x

    Article  CAS  Google Scholar 

  • Hebelstrup KH, Igamberdiev AU, Hill RD (2007) Metabolic effects of hemoglobin gene expression in plants. Gene 398(1-2):86–93. doi:10.1016/j.gene.2007.01.039

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Jensen EO (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta 227(4):917–927

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Moller IM, Mur LA (2012) Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 63(15):5581–5591. doi:10.1093/jxb/ers210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebelstrup KH, Shah JK, Igamberdiev AU (2013) The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol Plant 148(4):457–469. doi:10.1111/ppl.12062

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJ, Christiansen MW, Mur LA, Igamberdiev AU (2014) An assessment of the biotechnological use of hemoglobin modulation in cereals. Physiol Plant 150(4):593–603. doi:10.1111/ppl.12115

    Article  CAS  PubMed  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins—what’s happening beyond nitric oxide scavenging? AoB Plants 2012:pls004. doi:10.1093/aobpla/pls004

  • Hopkins WG (1995) Introduction to plant physiology. Wiley, New York

    Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218(6):938–946

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Hill RD, Wally OS, Dionisio G, Ayele BT, Jami SK, Stasolla C (2014) Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol 165(2):810–825. doi:10.1104/pp.114.239335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105(1):3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225(6):1597–1602. doi:10.1007/s00425-006-0461-3

    Article  CAS  PubMed  Google Scholar 

  • Jin CW, Du ST, Zhang YS, Tang C, Lin XY (2009) Atmospheric nitric oxide stimulates plant growth and improves the quality of spinach (Spinacia oleracea). Ann Appl Biol 155(1):113–120

    Article  CAS  Google Scholar 

  • Kaya C, Sönmez O, Ashraf M, Polat T, Tuna L, Aydemir S (2015) Exogenous application of nitric oxide and thiourea regulates on growth and some key physiological processes in maize (Zea mays L.) plants under saline stress. Soil Water J (Spl Iss):61–66

    Google Scholar 

  • Kovacs I, Lindermayr C (2013) Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Front Plant Sci 4:137. doi:10.3389/fpls.2013.00137

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. doi:10.1111/nph.13502

    Article  PubMed  Google Scholar 

  • Legocki RP, Verma DP (1980) Identification of “nodule-specific” host proteins (nodoulins) involved in the development of rhizobium-legume symbiosis. Cell 20(1):153–163

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    Article  CAS  Google Scholar 

  • Leshem YY, Wills RBH, Ku VV (1998) Evidence for the function of the free reduced gas – nitric oxide (·NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–826

    Article  CAS  Google Scholar 

  • Li X-P, Wu B, Guo Q, Wang J-D, Zhang P, Chen W-X (2014) Effects of nitric oxide on postharvest quality and soluble sugar content in papaya fruit during ripening. J Food Process Preserv 38:591–599

    Article  Google Scholar 

  • Liao WB, Zhang ML, Yu JH (2013) Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci Hortic 155:30–38

    Article  CAS  Google Scholar 

  • Liu X, Hou F, Li G, Sang N (2015) Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants. J Environ Sci (China) 34:93–99. doi:10.1016/j.jes.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Xu X, Hao L, Cao J (2007) Nitrogen dioxide-induced responses in Brassica campestris seedlings: the role of hydrogen peroxide in the modulation of antioxidative level and induced resistance. Agric Sci China 6:1193–1200

    Article  CAS  Google Scholar 

  • Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28:489–499

    Article  CAS  PubMed  Google Scholar 

  • Manjunatha G, Gupta KJ, Lokesh V, Mur LA, Neelwarne B (2012a) Nitric oxide counters ethylene effects on ripening fruits. Plant Signal Behav 7(4):476–483. doi:10.4161/psb.19523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunatha G, Lokesh V, Bhagyalashmi N (2012b) Nitric oxide-induced enhancement of banana fruit attributes and keeping quality. Acta Hortic 934:799–806

    Article  Google Scholar 

  • Morikawa H (2008) Atmospheric nitrogen dioxide at ambient levels stimulates growth and development of horticultural plants. Botany 86:213–217

    Article  Google Scholar 

  • Mur LA, Mandon J, Cristescu SM, Harren FJ, Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181(5):509–519. doi:10.1016/j.plantsci.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Sivakumaran A, Mandon J, Cristescu SM, Harren FJ, Hebelstrup KH (2012) Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J Exp Bot 63(12):4375–4387. doi:10.1093/jxb/ers116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215. doi:10.3389/fpls.2013.00215

    Article  PubMed  PubMed Central  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128(1):13–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16(10):2785–2794. doi:10.1105/tpc.104.025379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pristijono P, Wills RBH, Golding JB (2006) Inhibition of browning on the surface of apple slices by short term exposure to nitric oxide (NO) gas. Postharv Biol Technol 42:256–259

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440(7086):922–925. doi:10.1038/nature04486

    Article  CAS  PubMed  Google Scholar 

  • Rockel P, Rockel A, Wildt J, Segschneider H-J (1996) Nitric oxide (NO) emission by higher plants. In: Van Cleemput O et al (eds) Progress in nitrogen cycling studies. Developments in plant and soil science, vol 68. Springer, Dordrecht, pp 603–606

    Google Scholar 

  • Roy RN, Finck A, Blair GJ, Tandon HLS (2006) Plant nutrition for food security-a guide for integrated nutrient management. FAO UN:91–140

    Google Scholar 

  • Saadatian M, Ahmadiyan S, Akbari M, Balouchi Z (2012) Effects of pretreatment with nitric oxide on kiwifruit storage at low temperature. Adv Environ Biol 6:1902–1908

    CAS  Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223(6):1154–1164. doi:10.1007/s00425-005-0162-3

    Article  CAS  PubMed  Google Scholar 

  • Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt MR (2005) Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J 43(4):520–529. doi:10.1111/j.1365-313X.2005.02471.x

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270. doi:10.1111/j.1365-3040.2011.02336.x

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Morikawa H (2014) Nitrogen dioxide is a positive regulator of plant growth. Plant Signal Behav 9:e28033

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Nakagawa M, Sakamoto A, Ohsumi C, Matsubara T, Morikawa H (2005) Atmospheric nitrogen dioxide gas is a plant vitalization signal to increase plant size and the contents of cell constituents. New Phytol 168(1):149–154. doi:10.1111/j.1469-8137.2005.01493.x

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Adam SEH, Konaka D, Morikawa H (2008) Nitrogen dioxide at an ambient level improves the capability of kenaf (Hibiscus cannabinus) to decontaminate cadmium. Int J Phytoremediation 10:73–76

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Sakamoto A, Ezura H, Morikawa H (2011) Prolonged exposure to atmospheric nitrogen dioxide increases fruit yield of tomato plants. Plant Biotechnol 28:485–487

    Article  CAS  Google Scholar 

  • Takahashi M, Furuhashi T, Ishikawa N, Horiguchi G, Sakamoto A, Tsukaya H, Morikawa H (2014) Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytol 201(4):1304–1315. doi:10.1111/nph.12609

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Zhao H, Hong J, Han Y, Li H, Zhao W (2008) Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agric Sci 4:307–313

    Google Scholar 

  • Trevaskis B, Watts RA, Andersson CR, Llewellyn DJ, Hargrove MS, Olson JS, Dennis ES, Peacock WJ (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci USA 94(22):12230–12234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallano DM, Sparks JP (2008) Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar delta15N values. New Phytol 177:946–955

    Article  CAS  PubMed  Google Scholar 

  • Verma D (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4(4):373–382. doi:10.1105/tpc.4.4.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc Natl Acad Sci USA 98(18):10119–10124. doi:10.1073/pnas.191349198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisler F, Behrens T, Horst WJ (2001) The role of nitrogen-efficient cultivars in sustainable agriculture. ScientificWorldJournal 1(Suppl 2):61–69. doi:10.1100/tsw.2001.264

    Article  PubMed  PubMed Central  Google Scholar 

  • Wills RBH, Soegiarto L, Bowyer MC (2007) Use of a solid mixture containing diethylenetriamine/nitric oxide (DETANO) to liberate nitric oxide gas in the presence of horticultural produce to extend postharvest life. Nitric Oxide 17:44–49

    Article  CAS  PubMed  Google Scholar 

  • Wills RBH, Pristijono P, Goding JB (2008) Browning on the surface of cut lettuce slices inhibited by short term exposure to nitric oxide (NO). Food Chem 107:1387–1392

    Article  CAS  Google Scholar 

  • Xu Q, Zhou B, Ma C, Xu X, Xu J, Jiang Y, Liu C, Li G, Herbert SJ, Hao L (2010) Salicylic acid-altering Arabidopsis mutants response to NO(2) exposure. Bull Environ Contam Toxicol 84(1):106–111. doi:10.1007/s00128-009-9913-3

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Spoel SH, Loake GJ (2012) Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochim Biophys Acta 1820(6):770–776. doi:10.1016/j.bbagen.2011.06.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lindermayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lindermayr, C., Hebelstrup, K.H. (2016). Growth-Promoting Effect of NO Fumigation and Hemoglobins. In: Lamattina, L., García-Mata, C. (eds) Gasotransmitters in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-40713-5_7

Download citation

Publish with us

Policies and ethics