Skip to main content

Protein Denitrosylation in Plant Biology

  • Chapter

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Nitric oxide (NO) is a key signalling molecule involved in fundamental processes in animals and plants. NO mainly transmits its action through post-translational modifications (NO-PTMs), among which S-nitrosylation, the covalent attachment of an NO group to a rare, highly reactive cysteine (Cys) thiol to form an S-nitrosothiol (SNO), is preeminent. In the last decade, the numbers of proteins identified that undergo S-nitrosylation have significantly increased. This analysis has revealed that a wide range of both physiological and stress response processes are regulated by this post-translational modification. To function effectively as a molecular cue, S-nitrosylation must be specific and reversible. Denitrosylation, the removal of an NO group from an SNO, has emerged as a key regulatory process. While the role of S-nitrosylation in plant biology has garnered significant attention, denitrosylation, a pivotal counterpoint, remains relatively unexplored. In plants, S-nitrosoglutathione reductase (GSNOR) and thioredoxin reductase (Trx)-mediated denitrosylation have emerged as key mechanisms for denitrosylation.

This chapter describes the current state of the art with respect to the role of denitrosylation in plant biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132(4):2248–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alderton WK, Cooper CH, Knowles R (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Stamler JS (2012) Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med 90(3):233–244

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181(5):527–533

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014a) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65(2):527–538

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB (2014b) Differential transcriptomic analysis by RNA-seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55(6):1080–1095

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66(19):5983–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beigi F, Gonzalez DR, Minhas KM, Sun Q-A, Foster MW, Khan SA, Treuer AV, Dulce RA, Harrison RW, Saraiva RM (2012) Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc Natl Acad Sci 109(11):4314–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Laxalt AM, Lamattina L (1997) Putative role of nitric oxide in plant-pathogen interactions. In: Moncada S, Toda N, Higgs EA (eds) The biology of nitric oxide, Part 6. Portland Press, London, 250p

    Google Scholar 

  • Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320(5879):1050–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10(10):721–732

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li J, Teixeira MB, Gouveia CH, Bianco AC, Kapiloff MS (2015) S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Invest 125(4):1679–1691

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaki M, Fernández-Ocaña AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gómez-Rodríguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol 50(2):265–279

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Kovacs I, Spannagl M, Lindermayr C (2014) Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 9(10):e110232

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19(12):1377–1387

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Chaki M, Fernández-Ocaña A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Río LA, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49(11):1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181(5):604–611

    Article  CAS  PubMed  Google Scholar 

  • Corrales FJ, Ruiz F, Mato JM (1999) In vivo regulation by glutathione of methionine adenosyltransferase S-nitrosylation in rat liver. J Hepatol 31(5):887–894

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Cejudo FJ, Lamattina L (2015) Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in Arabidopsis. Ann Bot 116(4):695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98(23):13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil-Maurizi C, Poinssot B (2012) Role of glutathione in plant signaling under biotic stress. Plant Signal Behav 7(2):210–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci 95(17):10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun B-W, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci 102(22):8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15(9):391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frendo P, Baldacci-Cresp F, Benyamina SM, Puppo A (2013) Glutathione and plant response to the biotic environment. Free Radic Biol Med 65:724–730

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2012) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  Google Scholar 

  • Gong B, Wen D, Wang X, Wei M, Yang F, Li Y, Shi Q (2015) S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant Cell Physiol 56(4):790–802

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco TM, Hodara R, Parastatidis I, Heijnen HFG, Dennehy MK, Liebler DC, Ischiropoulos H (2006) Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci 103(19):7420–7425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16(3):160–168

    Article  CAS  PubMed  Google Scholar 

  • Hogg N (2002) The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol 42(1):585–600

    Article  CAS  PubMed  Google Scholar 

  • Holmes AJ, Williams DLH (2000) Reaction of ascorbic acid with S-nitrosothiols: clear evidence for two distinct reaction pathways. J Chem Soc Perkin Trans 2(8):1639–1644

    Article  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci 84(24):9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen D, Belka G, Du Bois G (1998) S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 331:659–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12(12):2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepper L (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ (1967) 13(4):537–542

    Article  CAS  Google Scholar 

  • Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56(1):153–162

    Article  CAS  PubMed  Google Scholar 

  • Kovacs I, Lindermayr C (2013) Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Front Plant Sci 4:137

    PubMed  PubMed Central  Google Scholar 

  • Kovacs I, Durner J, Lindermayr C (2015) Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. doi:10.1111/nph.13502

    Article  PubMed  Google Scholar 

  • Kronenfeld G, Engelman R, Weisman-Shomer P, Atlas D, Benhar M (2015) Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents. Free Radic Biol Med 79:138–146

    Article  CAS  PubMed  Google Scholar 

  • Kubienová L, Tichá T, Jahnová J, Luhová L, Mieslerovái B, Petrivalský M (2014) Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta 239(1):139–146

    Article  PubMed  Google Scholar 

  • Kwon E, Feechan A, Yun B-W, Hwang B-H, Pallas JA, Kang J-G, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236(3):887–900

    Article  CAS  PubMed  Google Scholar 

  • Laxalt A, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol 103(7):643–651

    Article  CAS  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20(3):786–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6(6):789–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22(8):2894–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410(6827):490–494

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116(4):617–628

    Article  CAS  PubMed  Google Scholar 

  • Malik SI, Hussain A, Yun B-W, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181(5):540–544

    Article  CAS  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2010) Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 395(4):844–859

    Article  CAS  PubMed  Google Scholar 

  • Meng T-C, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1(3):154–158

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23(8):2809–2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484

    Article  CAS  PubMed  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol 37(1):113–116

    Article  CAS  Google Scholar 

  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18(7):402–411

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Chen F, Kovalenkov Y, Pandey D, Moseley MA, Foster MW, Black SM, Venema RC, Stepp DW, Fulton DJR (2012) Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation. Free Radic Biol Med 52(9):1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero JM, Bizzozero OA (2009) Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cord. J Neurosci Res 87(3):701–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143(3):1282–1292

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta R, Holmgren A (2012) The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Sub 1820(6):689–700

    Article  CAS  Google Scholar 

  • Shi Y-F, Wang D-l, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu J-Z (2015) Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol Plant 8(9):1350–1365

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248(3):447–455

    Article  CAS  PubMed  Google Scholar 

  • Smith BC, Marletta MA (2012) Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol 16(5):498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadaro D, Yun B-W, Spoel SH, Chu C, Wang Y-Q, Loake GJ (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant 138(4):360–371

    Article  CAS  PubMed  Google Scholar 

  • Staab CA, Hellgren M, Höög JO (2008) Medium-and short-chain dehydrogenase/reductase gene and protein families: dual functions of alcohol dehydrogenase 3: implications with focus on formaldehyde dehydrogenase and S-nitrosoglutathione reductase activities. Cell Mol Life Sci 65(24):3950–3960

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S) NO signals: translocation, regulation, and a consensus motif. Neuron 18(5):691–696

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter P, Ball EG (1955) Formaldehyde dehydrogenase, a glutathione-dependent enzyme system. J Biol Chem 213(1):445–461

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321(5891):952–956

    Article  CAS  PubMed  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LIA, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70(3):492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-Q, Feechan A, Yun B-W, Shafiei R, Hofmann A, Taylor P, Xue P, Yang F-Q, Xie Z-S, Pallas JA (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284(4):2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Parrott AM, Liu T, Jain MR, Yang Y, Sadoshima J, Li H (2011) Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteomics 74(11):2498–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Guerra D, Lee U, Vierling E (2013) S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci 4:430

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu M, Yun B-W, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Curr Opin Plant Biol 15(4):424–430

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202(4):1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yun B-W, Spoel SH, Loake GJ (2011) Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochim Biophys Acta Gen Sub 1820(6):770–776

    Article  Google Scholar 

  • Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire SD, Trost P (2013) Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem 288(31):22777–22789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JBM would like to thank Alfonso Martín Escudero Foundation for funding his postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Loake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Begara-Morales, J.C., Loake, G.J. (2016). Protein Denitrosylation in Plant Biology. In: Lamattina, L., García-Mata, C. (eds) Gasotransmitters in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-40713-5_10

Download citation

Publish with us

Policies and ethics