Skip to main content

Syntheses and Characterization of Surface-Modified Carbon Materials

  • Chapter
  • First Online:
Surface Modified Carbons as Scavengers for Fluoride from Water

Abstract

Surface-modified carbons were synthesized from biomaterials such as tamarind fruit shells, watermelon seeds, adamant creeper, Indian spurge tree, and the natural biopolymer, starch using modifying agents. Modification of surface was achieved by, on one hand, dispersing fluorophilic elements such as calcium, iron, and cerium and, on the other hand, using ammonium carbonate to generate more porosity on the surface. These surface-modified carbon adsorbents were characterized for BET isotherm, iodine number, elemental analysis, Fourier transform infrared (FTIR), SEM, and XRD studies. There were no appreciable changes in the stretching frequencies, surface morphology, and diffraction patterns after the fluoride sorption onto these carbonized materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1992) Indian medicinal plants, vol 2. Orient Longman, India, p 112

    Google Scholar 

  • Briois V, Williams CE, Dexpert H, Villain F, Cabane B, Deneuve F, Magnier C (1993) Formation of solid particles by hydrolysis of cerium sulphate. Part I. Time evolution of the hydrolyzed solutions. J Mater Sci 28:5019–5031

    Article  CAS  Google Scholar 

  • Burkill HM (2000) The useful plants of west tropical Africa. Royal Botanical Gardens, Kew

    Google Scholar 

  • Daifullah AAM, Yakout SM, Elreefy SA (2007) Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147:633–643

    Article  CAS  Google Scholar 

  • Deng S, Liu H, Zhou W, Huang J, Yu G (2011) Mn-Ce oxide as a high capacity adsorbent for fluoride removal from water. J Hazard Mater 186:1360–1366

    Article  CAS  Google Scholar 

  • Dolas H, Sahin O, Saka C, Demir H (2011) A new method on producing high surface area activated carbon: the effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell. Chem Eng J 166:191–197

    Article  CAS  Google Scholar 

  • Doughari JH (2006) Antimicrobial activity of Tamarindus indica. Trop J Pharm Res 5(2):597–603

    Google Scholar 

  • Enechi OC, Odonwodo I (2003) An assessment of the phytochemical and nutrient composition of the pulverized root of Cissus quadrangularis. Bioresearch 1(1):63–68

    Google Scholar 

  • Eswaran R, Anandhan A, Doss A, Sangeetha G, Anand P (2012) Analysis of chemical composition of Cissus quadrangularis Linn. by GC–MS. Asian J Pharm Clin Res 5:139–140

    CAS  Google Scholar 

  • Gridos P, Dufour A, Fierro V, Rogaume Y, Rogaume C, Zoulalian A, Celzard A (2009) Activated carbons prepared from wood particle board wastes: characterization and phenol adsorption capacities. J Hazard Mater 166:491–501

    Article  Google Scholar 

  • Haimour NM, Emeish S (2006) Utilization of date stones for production of activated carbon using phosphoric acid. Waste Manage 26:651–660

    Article  CAS  Google Scholar 

  • Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S (2002) ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci U S A 99:11037–11042

    Article  CAS  Google Scholar 

  • Huang YH, Shih YJ, Chang CC (2011) Adsorption of fluoride by waste iron oxide: the effects of solution pH, major coexisting anions and adsorbent calcinations temperature. J Hazard Mater 186:1365–1369

    Google Scholar 

  • Kacan E, Kutahyal C (2012) Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J Anal Appl Pyrolysis 97:149–157

    Article  CAS  Google Scholar 

  • Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single stage chemical activation at low retention times. Bioresour Technol 99:6809–6816

    Article  CAS  Google Scholar 

  • Kilic M, Varol EA, Putun AE (2011) Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J Hazard Mater 189:397–403

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, Sterling, VA

    Google Scholar 

  • Liao XP, Shi B (2005) Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber. Environ Sci Technol 39:4628–4632

    Article  CAS  Google Scholar 

  • Liou TH (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158:129–142

    Article  CAS  Google Scholar 

  • Liu ZZ (2008) Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 49:3498–3504

    Article  CAS  Google Scholar 

  • Lussier MG, Shull JC, Miller DJ (1994) Activated carbon from cherry stones. Carbon 32:1493–1498

    Article  CAS  Google Scholar 

  • Martinez ML, Torres MM, Guzman CA, Maestri DM (2006) Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind Crops Prod 23:23–28

    Article  CAS  Google Scholar 

  • Mohamed EF, Andriantsiferana C, Wilhelm AM, Delmas H (2011) Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon. Environ Technol 32:1325–1336

    Article  CAS  Google Scholar 

  • Mohan D, Sharma R, Singh VK, Steele P, Pittman CU Jr (2012) Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling. Ind Eng Chem Res 51:900–914

    Article  CAS  Google Scholar 

  • Msagati TAM, Mamba BB, Sivasankar V, Omine K (2014) Surface restructuring of lignite by bio-char of cuminum cyminum—exploring the prospects in defluoridation followed by fuel applications. App Surf Sci 301:235–243

    Article  CAS  Google Scholar 

  • Oh TK, Choi B, Shinogi Y, Chikushi Y (2012) Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous media. Water Air Soil Pollut 22:3729–3738

    Article  Google Scholar 

  • Oliveira LCA, Pereira E, Guimaraes IR, Vallone A, Pereira M, Mesquita JP, Sapag K (2009) Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J Hazard Mater 165:87–94

    Article  CAS  Google Scholar 

  • Ozdemir M, Bolgaz T, Saka C, Sahin O (2011) Preparation and characterization of activated carbon from cotton stalks in a two-stage process. J Anal Appl Pyrolysis 92:171–175

    Article  CAS  Google Scholar 

  • Patnukao P, Pavasant P (2008) Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation. Bioresour Technol 99:8540–8543

    Article  CAS  Google Scholar 

  • Pokol G, Leskela T, Niinistö L (1994) Thermal behaviour of sulphate and nitrate complexes of cerium (IV). J Therm Anal Calorim 42:343–359

    Article  CAS  Google Scholar 

  • Poston JA, Siriwardane RV, Fisher EP, Miltz AL (2003) Thermal decomposition of the rare earth sulfates of cerium (III), cerium (IV), lanthanum (III) and samarium (III). Appl Surf Sci 214:83–102

    Article  CAS  Google Scholar 

  • Rajkumar S (2015) A study on the sorption behavior of fluoride onto carbonaceous materials made from biomass: kinetic and thermodynamic studies. Ph.D. thesis (awarded), Reg. No. 2010750104

    Google Scholar 

  • Ramirez-Montoya LA, Hernandez-Montoya V, Bonilla-Petriciolet A, Montes-Moran MA, Tovar-Gomez R, Moreno-Virgen MR (2014) Preparation, characterization and analyses of carbons with natural and induced calcium compounds for the adsorption of fluoride. J Anal Appl Pyrolysis 105:75–82

    Article  CAS  Google Scholar 

  • Ramos RL, Turrubiartes JO, Castillo MAS (1999) Adsorption of fluoride from aqueous solution on aluminium-impregnated carbon. Carbon 37:609–617

    Article  CAS  Google Scholar 

  • Rastogi RP, Mehrota BN (1993) Compendium of Indian medicinal plants. Counc Sci Ind Res 3:173–174

    Google Scholar 

  • Reis Jose dos M, Silverio F, Tronto J, Valim JB (2004) Effects of temperature, pH and ionic strength on adsorption of sodium do decyl benzenesulfonate into Mg-Al-CO3 layered double hydroxides. J Phys Chem Solid 65:487–492

    Article  Google Scholar 

  • Rios RVRA, Escandell MM, Sabio MM, Reinoso FR (2006) Carbon foam prepared by pyrolysis of olive stones under steam. Carbon 44:1448–1454

    Article  CAS  Google Scholar 

  • Saka C (2012) BET, TG-DTG, FT-IR SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrolysis 95:21–24

    Article  CAS  Google Scholar 

  • Sharma IB, Singh V, Lakhanpal M (1992) Study of the thermal decomposition of ammonium cerium sulphate. J Therm Anal Calorim 38:1345–1355

    Article  CAS  Google Scholar 

  • Sharma PC, Yelne MB, Dennis TJ (2001) Database on medicinal plants used in Ayurvedic. Cent Counc Res Ayur Sid 1:43–49

    Google Scholar 

  • Singh MKD, Keskar M, Venugopal V (1999) Solid state reactions of CeO2, ThO2 and PuO2 with ammonium sulphate. J Nucl Mater 265:146–153

    Article  Google Scholar 

  • Sivasankar V, Ramachandramoorthy T, Chandramohan A (2010) Fluoride removal from water using activated and MnO2-coated Tamarind Fruit (Tamarindus indica) shell: batch and column studies. J Hazard Mater 177:719–729

    Article  CAS  Google Scholar 

  • Sivasankar V, Rajkumar S, Murugesh S, Darchen A (2012a) Influence of shaking or stirring dynamic methods in the defluoridation behavior of activated tamarind fruit shell carbon. Chem Eng J 197:162–172

    Article  CAS  Google Scholar 

  • Sivasankar V, Rajkumar S, Murugesh S, Darchen A (2012b) Tamarind (Tamarindus indica) fruit shell carbon: a calcium-rich promising adsorbent for fluoride removal from ground water. J Hazard Mater 225–226:164–172

    Article  Google Scholar 

  • Sivasankar V, Murugesh S, Rajkumar S, Darchen A (2013) Cerium dispersed in carbon (CeDC) and its adsorption behavior: a first example of tailored adsorbent for fluoride removal from drinking water. Chem Eng J 214:45–54

    Article  CAS  Google Scholar 

  • Sun K, Jiang JC (2010) Preparation and characterization of activated carbon from rubber seed shell by physical activation with steam. Biomass Bioenerg 34:539–544

    Article  CAS  Google Scholar 

  • Suzuki RM, Andrade AD, Sousa JC, Rollemberg MC (2007) Preparation and characterization of activated carbon from rice bran. Bioresour Technol 98:1985–1991

    Article  CAS  Google Scholar 

  • Tay T, Ucar S, Karagoz S (2009) Preparation and characterization of activated carbon from waste biomass. J Hazard Mater 165:481–485

    Article  CAS  Google Scholar 

  • Tchomgui-Kamga E, Alonzo V, Nanseu-Njiki CP, Audebrand N, Ngameni E, Darchen A (2010) Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water. Carbon 48:333–343

    Article  CAS  Google Scholar 

  • Vasant RA, Narashimacharya AV (2012) Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations. Environ Health Prev Med 17(6):484–493

    Article  CAS  Google Scholar 

  • Yadhav AK, Abbassi R, Gupta A, Dadashzadeh M (2013) Removal of fluoride from aqueous solution and groundwater by wheat straw and activated bagasse carbon of sugar cane. Ecol Eng 52:211–218

    Article  Google Scholar 

  • Zabaniotou A, Stavropoulos G, Skoulou V (2008) Activated carbon from olive kernels in a two-stage process: industrial improvement. Bioresour Technol 99:320–326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataraman Sivasankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murugesh, S., Mahalakshmi, S., Sunitha, T., Sivasankar, V. (2016). Syntheses and Characterization of Surface-Modified Carbon Materials. In: Sivasankar, V. (eds) Surface Modified Carbons as Scavengers for Fluoride from Water. Springer, Cham. https://doi.org/10.1007/978-3-319-40686-2_5

Download citation

Publish with us

Policies and ethics