Skip to main content

Fluoride: A World Ubiquitous Compound, Its Chemistry, and Ways of Contamination

  • Chapter
  • First Online:
Surface Modified Carbons as Scavengers for Fluoride from Water

Abstract

Fluoride, an incompatible lithophile and the most electronegative element, forms a number of soluble, pH-dependent formation of complexes with polyvalent metal ions in water. The interaction between water and sedimentary carbonates ultimately causes fluoride concentration gradient as a sequel of hydrogeochemistry. The occurrence of fluoride in groundwater due to fluorapatite solubility and the other governing factors such as rock chemistry, residence time, well depth, preferential pathways for the upward movement of deep groundwater, hydrologic condition of the pathways, and geologic structure have also been discussed. In this chapter, in addition to the geochemistry of fluoride, the chemistry of fluoride in water and its association with the other physicochemical parametric factors such as total dissolved solids and dissolved ions such as sodium, calcium, magnesium, arsenic, boron, and hydrogen carbonate have been elaborated. As fluoride and arsenic ions participate together in their occurrence in soil and hence water, their co-contamination has been exemplified from the research reports. Fluoride solubility as a function of evaporation, evapotranspiration, temperature, and water softening has also been accounted. The leaching aspects of soil-based adsorption–desorption mechanism and its ultimate destiny on fluoride enrichment of groundwater have also been added in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelgwad A, Watanabe K, Mohammed M, Takeuchi S (2009) Estimating groundwater residence time using multiple regression model based on fluoride dissolution: An exploration of possibilities. Env Earth Sci 60(3):449–462.

    Google Scholar 

  • Adriano DC (1986) Trace elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of metals, 2nd Edn. Springer - Verlag, New York, p. 867.

    Google Scholar 

  • Alarcon-Herrera MT, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Reyes-Gomez VM, Nunez D, Martin-Dominguez IR (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969

    Article  CAS  Google Scholar 

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper region of Ghana. Environ Geol 31(1):13–24

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. CRC, Boca Raton, 672p

    Book  Google Scholar 

  • Ayenew T (2008) The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ Geol 54(8):1313–1324

    Article  CAS  Google Scholar 

  • Bailey JC (1977) Fluorine in granitic rocks and melts: a review. Chem Geol 19(1–4):1–42

    Article  CAS  Google Scholar 

  • BGS, DPHE (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) British Geological Survey Technical Report WC/00/19 (4 volumes). British Geological Survey, Keyworth

    Google Scholar 

  • Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Storniolo A, Thir JM (2006) Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358(1–3):97–120

    Article  CAS  Google Scholar 

  • Borgnino L, Garcia MG, Bia G, Stupar YV, Le Coustumer P, Depetris PJ (2013) Mechanism of fluoride release in sediments of Argentina’s Central region. Sci Total Environ 443:245–255

    Article  CAS  Google Scholar 

  • Boyle DR (1992) Effect of base exchange softening on fluoride uptake in groundwaters of the Moncton sub-basin, New Brunswick, Canada. In: Kharaka YK, Maest AS (eds) Water-rock interaction, 7th international symposium on water-rock interaction, Rotterdam, pp 771–774

    Google Scholar 

  • Brindha K, Elango L (2013) Geochemistry of fluoride rich groundwater in a weathered granitic rock region, Southern India. Water Qual Expo Health 5:127–138

    Article  CAS  Google Scholar 

  • Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case-study from Robles County, Santiago del Estero Province. Appl Geochem 19(2):231–243

    Article  CAS  Google Scholar 

  • Carpenter R (1969) Factors controlling the marine geochemistry of fluorine. Geochim Cosmochim Acta 33(10):1153–1167

    Article  CAS  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Edmunds WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high fluoride concentration in abstracted groundwater: San Luis Potosıbasin, Mexico. J Hydrol 261(1–4):24–47

    Article  CAS  Google Scholar 

  • Castro de Esparza ML (2006) Removal of arsenic from drinking water and soil bio remediation. In: Bundchuh J. Armienta MA, Bhattacharya P, Matschullat J, Birkle P, Rodriguez R, Editors. Natural arsenic in groundwater of Latin America: Abstract volume, International Congress Mexico City, 20–24 June 2006, p. 16–17

    Google Scholar 

  • Chae GT, Yun ST, Kwon MJ, Kim SY, Mayer B (2006) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochem J 40(1):95–102

    Article  CAS  Google Scholar 

  • Chae GT, Yun ST, Bernhard M, Kim KH, Kim SY, Kwon JS, Kwon K, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(6):272–283

    Article  CAS  Google Scholar 

  • Chandrawanshi CK, Patel KS (1999) Fluoride deposition in Central India. Environ Monit Assess 55(2):251–265

    Article  CAS  Google Scholar 

  • Chebotarev II (1951) Principle of the estimation of subterranean waters. Water Wastewater Eng 55(662):129–135

    Google Scholar 

  • Colombo F, Lira R, Dorais MJ (2010) Mineralogy and crystal chemistry of micas from the A-type El Portezuelo Granite and related pegmatites, Catamarca (NW Argentina). J Geosci 55(1):43–56

    CAS  Google Scholar 

  • Currell M, Cartwright I, Raveggi M, Han D (2011) Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Appl Geochem 26(4):540–552

    Article  CAS  Google Scholar 

  • Dai X, Liu C, Li L (2007) Discussion and countermeasures on safe drinking water in the rural areas of China. Acta Geogr Sin 62(9):907–916

    Google Scholar 

  • Datta PS, Deb DL, Tyagi SK (1996) Stable isotope (O18) investigations on the process controlling fluoride contamination of groundwater. J Contam Hydrol 24(1):85–96

    Article  CAS  Google Scholar 

  • Deng YM, Wang YX, Ma T, Yang H, He J (2011) Arsenic associations in sediments from shallow aquifers of North Western Hetao Basin, Inner Mongolia. Environ Earth Sci 64(8):2001–2011

    Article  CAS  Google Scholar 

  • Desbarats AJ (2009) On elevated fluoride and boron concentrations in groundwaters associated with the lake Saint-Martin impact structure, Manitoba. Appl Geochem 24(5):915–927

    Article  CAS  Google Scholar 

  • Edmunds WM, Smedley PL (2005) Fluoride in natural waters. In: Selinus O (ed) Essentials of medical geology. Elsevier Academic, Burlington, MA, pp 301–329

    Google Scholar 

  • Egli M, Mirabella A, Fitze P (2001) Clay mineral transformations in soils affected by fluorine and depletion of organic matter within a time span of 24 years. Geoderma 103(3–4):307–334

    Article  CAS  Google Scholar 

  • Espinoza-Altamirano M (2006) Distribucion de la contaminacionnaturalporarsénicoen las aguassubterraneas de la subcuencaSuroestedel Valle de Sebaco-Metagalpa, Nicaragua. Natural arsenic in ground waters of Latin America Congress, Mexico, DF

    Google Scholar 

  • Fan X, Parker DJ, Smith MD (2003) Adsorption kinetics of fluoride on low cost materials. Water Res 37(20):4929–4937

    Article  CAS  Google Scholar 

  • Fantong WY, Satake H, Ayonghe SN, Suh EC, Adelana SMA, Fantong EBS, Banseka HS, Gwanfogbe CD, Woincham LN, Uehara Y, Zhang J (2010) Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose. Environ Geochem Health 32(2):147–163

    Article  CAS  Google Scholar 

  • Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur Districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145(3):839–849

    Article  CAS  Google Scholar 

  • Faure G (1991) Principles and applications of inorganic geochemistry: a comprehensive textbook for geology students. Macmillan Coll Div, New York, 626p

    Google Scholar 

  • Fordyce FM, Zhovinsky E, Povoroznuk V, Toth G, Hope BC, Iljinsky U, Baker J (2007) A health risk assessment for fluoride in Central Europe. Environ Geochem Health 29(2):83–102

    Article  CAS  Google Scholar 

  • Frencken JE (1992) Endemic fluorosis in developing countries, causes, effects and possible solutions: report of a symposium held in Delft, The Netherlands,27 Apr 1990. Leiden, The Netherlands: Eds. NIPG-TNO, 95p

    Google Scholar 

  • Frengstad B, Banks D, Siewers U (2001) The chemistry of Norwegian groundwaters: IV. The pH-dependence of element concentrations in crystalline bedrock groundwaters. Sci Total Environ 277(1–3):101–117

    Article  CAS  Google Scholar 

  • Fung K, Zhang Z, Wong J, Wong M (1999) Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut 104(2):197–205

    Article  CAS  Google Scholar 

  • Gao S, Sun R, Wei ZG, Zhao HY, Li HX, Hu F (2009) Size-dependent defluoridation properties of synthetic hydroxyapatite. J Fluor Chem 130(6):550–556

    Article  CAS  Google Scholar 

  • García MG, Sracek O, Fernández DS, Hidalgo M, Del V (2007) Factors affecting arsenic mobilization in groundwaters from northwestern Chaco-Pampean plain, Argentina. Environ Geol 52(7):1261–1275

    Article  CAS  Google Scholar 

  • García MG, Lecomte KL, Stupar Y, Formica SM, Barrionuevo M, Vesco M, Gallará R, Ponce R (2012) Geochemistry and health aspects of F-rich mountainous streams and groundwaters from Sierras Chicas de Córdoba, Argentina. Environ Earth Sci 65(2):535–545

    Article  CAS  Google Scholar 

  • Gizaw B (1996) The origin of high bicarbonate and fluoride concentrations in waters of the main Ethiopian Rift Valley. J Afr Earth Sci 22(4):391–402

    Article  CAS  Google Scholar 

  • Gomez ML, Blarasin MT, Martìnez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57(1):143–155

    Article  CAS  Google Scholar 

  • Gosselin DC, Headrick J, Harvey FE, Tremblay R, McFarland K (1999) Fluoride in Nebraska’s ground water. Ground Water Monit Remediat 19(2):87–95

    Article  CAS  Google Scholar 

  • Guo G, Wang Y, Ma T, Ma R (2007) Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Exp 93(1):1–12

    Article  CAS  Google Scholar 

  • Guo X, Wang R, Cheng C, Wei W, Tang L, Wang Q, Tang D, Liu G, He G, Li S (2008) A preliminary investigation of the IQs of 7-13 year-old children from an area with coal burning-related fluoride poisoning. Fluoride 41(2):125–128

    Google Scholar 

  • Guo H, Zhang Y, Xing L, Jia Y (2012) Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. App Geochem 27(11):2187–2196

    Article  CAS  Google Scholar 

  • Gupta S, Banerjee S, Saha RN, Datta JK, Mondal NK, Burdwan (2006) Fluoride geochemistry of groundwater in Nalhati-1 block of the Birbhum, West Bengal, India. Fluoride 39(4):318–320

    Google Scholar 

  • Gupta S, Mondal D, Bardhan A (2012) Geochemical provenance and spatial distribution of fluoride in groundwater in parts of Raniganj coal field, West Bengal, India. Arch Appl Sci Res 4(1):292–306

    CAS  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride containing groundwater in India. Ground Water 13(3):275–281

    Article  CAS  Google Scholar 

  • He J, Ma T, Deng Y, Yang H, Wang Y (2009) Environmental geochemistry of high arsenic groundwater at western Hetao Plain, Inner Mongolia. Front Earth Sci China 3(1):63–72

    Article  CAS  Google Scholar 

  • He J, An Y, Zhang F (2013) Geochemical characteristics and fluoride distribution in the groundwater of the Zhangye Basin in the North Western China. J Geochem Explor 135:22–30

    Article  CAS  Google Scholar 

  • Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267(7):729–804

    Article  CAS  Google Scholar 

  • Hem JD (1970) Study and interpretations of the chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper 1473

    Google Scholar 

  • Holm TR, Scott JW, Wilson SD, Kelly WR, Talbott JL, Roadcap GS (2004) Arsenic geochemistry and distribution in the Mahomet Aquifer, Illinois. Illinois Waste Management and Research Center Research Report 107, Champaign

    Google Scholar 

  • Hudak PF, Sanmanee S (2003) Spatial patterns of nitrate, chloride, sulphate and fluoride concentrations in the Woodbine aquifer of north-central Texas. Environ Monit Assess 82(3):311–320

    Article  CAS  Google Scholar 

  • Jacks G, Sharma VP (1995) Geochemistry of calcic horizons in relation to hill slope processes, Southern India. Geoderma 67(3–4):203–214

    Article  CAS  Google Scholar 

  • Jacks G, Rajagopalan K, Alveteg T, Jonsson M (1993) Genesis of high-F groundwaters, Southern India. Appl Geochem 8(2):241–244

    Article  Google Scholar 

  • Jacks G, Bhattachrya P, Chaudhary V, Singh KP (2005) Controls on the genesis of some high-fluoride groundwater in India. Appl Geochem 20(2):221–228

    Article  CAS  Google Scholar 

  • Jain M, Kulshrestha UC, Sarkar AK, Parashar DC (2000) Influence of crustal aerosols on wet deposition at urban and rural sites in India. Atmos Environ 34(29–30):5129–5137

    Article  CAS  Google Scholar 

  • Jayawardana DT, Pitawala HMTGA, Ishiga H (2012) Geochemical assessment of soils in districts of fluoride-rich and fluoride-poor groundwater. J Geochem Explor 114:118–125

    Article  CAS  Google Scholar 

  • Kadir S, Eren M (2008) The occurrence and genesis of clay minerals associated with Quaternary caliches in the Mersin area, Southern Turkey. Clay Clay Miner 56(2):244–258

    Article  CAS  Google Scholar 

  • Kainosho H, Takeda T, Tokunaga T, Takizawa S, Hayashi T, Murakami M, Mogi K (2008) Fluoride contamination process in groundwater, Lamphun City, northern Thailand. In: Proceedings of 36th IAH Congress, October, 2008 Toyama, Japan. Integrating groundwater science and human well-being

    Google Scholar 

  • Karro E, Uppin M (2013) The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, Central and Western Estonia. Environ Monit Assess 185(5):3735–3748

    Article  CAS  Google Scholar 

  • Kim K, Jeong GY (2005) Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula. Chemosphere 58(10):1399–1408

    Article  CAS  Google Scholar 

  • Kim SH, Kim K, Ko KS, Kim Y, Lee KS (2012) Co–contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 87(8):851–856

    Article  CAS  Google Scholar 

  • Koritnig S (1978) Fluorine. In: Wedepohl KH (ed) Handbook of geochemistry, vol II/1. Springer, Berlin, pp 9-C-1 to B-9-O-3

    Google Scholar 

  • Krainov SR, Rubeikan VZ, Kapranov SD, Petrova NG (1969) Highly alkaline (pH 12) fluosilicate waters in the deeper zones of the Lovozero massif. Geochem Int 6:635–640

    Google Scholar 

  • Krauskopf KB, Bird DK (1995) An introduction to geochemistry. McGraw-Hill Int, Singapore, p 647

    Google Scholar 

  • Kundu N, Panigrahi MK, Tripathy S, Munshi S, Powell MA, Hart BR (2001) Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environ Geol 41(3):451–460

    CAS  Google Scholar 

  • Kundu MC, Mandal B, Hazra GC (2009) Nitrate and fluoride concentration in groundwater of an intensively managed agroecosystem: a functional relationship. Sci Total Environ 407(8):2771–2782

    Article  CAS  Google Scholar 

  • Levy DB, Schramke JA, Esposito KJ, Erickson TA, Moore JC (1999) The shallow ground water chemistry of arsenic, fluoride, and major elements: Eastern Owens Lake, California. Appl Geochem 14(1):53–65

    Article  CAS  Google Scholar 

  • Leybourne MI, Peter JM, Johannesson KH, Boyle DR (2008) The Lake Saint-Martin bolide has a big impact on groundwater fluoride concentrations. Geology 36(2):115–118

    Article  CAS  Google Scholar 

  • Li Z, Tainosho Y, Shiraishi K, Owada M (2003) Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sør Rondane Mountains, East Antarctica. Geochem J 37(2):145–161

    Article  CAS  Google Scholar 

  • Lopez DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75

    Article  CAS  Google Scholar 

  • Mahlknecht J, Steinich B, Navarro de leon (2004) Groundwater Chemistry and mass transfers in the independence aquifer, Central Mexico by using multivariate statistics and mass balance models. Environ Geol 45:781–795.

    Google Scholar 

  • Mamatha P, Rao SM (2010) Geochemistry of fluoride rich groundwater in Kolar and Tumkur Districts of Karnataka. Environ Earth Sci 61(1):131–142

    Article  CAS  Google Scholar 

  • Manoharan V, Loganathan P, Tillman RW, Parfitt RL (2007) Interactive effect of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeumvulgare L.) root growth. Environ Pollut 145(3):778–786

    Article  CAS  Google Scholar 

  • Marques JM, Andrade M, Carreira PM, Eggenkamp HGM, Graca RC, Aires-Barros L (2006) Chemical and isotopic signatures of Na/HCO3/CO2-rich geofluids, North Portugal. Geofluids 6(4):273–287

    Article  CAS  Google Scholar 

  • Martin D, Sieffermann G, Vallerie M (1966) Les sols rouges du Nord-Cameroon. Cah ORSTOM Ser Pedol IV(3):3–28

    Google Scholar 

  • Meenakshi GVK, Kavita R, Malik A (2004) Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis. J Hazard Mater 106(1–2):55–60

    CAS  Google Scholar 

  • Milich L (1997) Deserts of the world. http://ag.arizona.edu/~lmilich/desert1.html

  • Mondal D, Gupta S, Reddy DV, Nagabhushanam P (2014) Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum District, West Bengal, India. J Geochem Explor 145:190–206

    Article  CAS  Google Scholar 

  • Nagadu B, Koeberl C, Kurat G (2003) Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. J Afr Earth Sci 36(1–2):73–87

    Article  CAS  Google Scholar 

  • Naseem S, Rafique T, Bashir E, Bhanger MI, Laghari A, Usmani TH (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parker area, Thar Desert, Pakistan. Chemosphere 78(11):1313–1321

    Article  CAS  Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco Mdel C, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Article  CAS  Google Scholar 

  • Nordstrom DK, Jenne EA (1977) Fluorite solubility equilibria in selected geothermal waters. Geochim Cosmochim Acta 41(2):175–188

    Article  CAS  Google Scholar 

  • Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water–rock interaction at Stripa. Geochim Cosmochim Acta 53(8):1727–1740

    Article  CAS  Google Scholar 

  • Noyola-Medrano MC, Ramos-Leal JA, Domínguez-Mariani E, Pineda-Martínez LF, López-Loera H, Carbajal N (2009) Factores que dan origen al minado de acuíferos en ambientes áridos: caso Valle de San Luis Potosí. Rev Mex Cienc Geol 26(2):395–410

    Google Scholar 

  • Ozsvath DL (2006) Fluoride concentration in a crystalline bedrock aquifer Marathon County, Wisconsin. Environ Geol 50:132–138

    Article  CAS  Google Scholar 

  • Ozsvath DL (2009) Fluoride and environmental health: a review. Rev Environ Sci Biotechnol 8(1):59–79

    Article  CAS  Google Scholar 

  • Patra RC, Dwivedi SK, Bhardwa JB, Swarup D (2000) Industrial fluorosis in cattle and buffalo around Udaipur, India. Sci Total Environ 253(1–3):145–150

    Article  CAS  Google Scholar 

  • Pauwels H, Ahmed S (2007) Fluoride in groundwater: origin and health impacts. Geosciences 5:68–73

    Google Scholar 

  • Pickering WF (1985) The mobility of soluble fluoride in soil. Environ Pollut 9(4):281–308

    Article  CAS  Google Scholar 

  • Rafique T, Naseem S, Usmani TH, Bashir E, Khan FA, Bhanger MI (2009) Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. J Hazard Mater 171(1–3):424–430

    Article  CAS  Google Scholar 

  • Rangarajan R, Athavale RN (2000) Annual replenishable ground water potential of India—an estimate based on injected tritium studies. J Hydrol 234(1–2):38–53

    Article  CAS  Google Scholar 

  • Rao NS (1997) The occurrence and behaviour of the groundwater in the lower Vamsadhara basin, India. Hydrol Sci J 42(6):877–892

    Article  CAS  Google Scholar 

  • Reddy TN, Raj P (1997) Hydrogeological conditions and optimum well discharges in granitic terrain in parts of Nalgonda district, Andhra Pradesh, India. J Geol Soc Ind 49(1):61–74

    CAS  Google Scholar 

  • Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS, Smedley PL (2010) Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chem Geol 269(3–4):278–289

    Article  CAS  Google Scholar 

  • Robertson FN (1989) Arsenic in groundwater under oxidizing conditions, southwest United States. Environ Geochem Health 11(3):171–185

    Article  CAS  Google Scholar 

  • Rodas M, Luque FJ, Mas R, Garzon MG (1994) Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo Basins, Central Spain. Clay Clay Miner 29(2):273–285

    Article  CAS  Google Scholar 

  • Rosi M, Papale P, Lupi L, Stoppato M (2003) Volcanoes: a firefly guide. Firefly Books, Buffalo, NY, 335p

    Google Scholar 

  • Ruggieri F, Saavedra J, Fernandez-Turiel JL, Gimeno D, Garcia-Valles M (2010) Environmental geochemistry of ancient volcanic ashes. J Hazard Mater 183(1–3):353–365

    Article  CAS  Google Scholar 

  • Ruggieri F, Fernandez-Turiel JL, Saavedra J, Gimeno D, Polanco E, Naranjo JA (2011) Environmental geochemistry of recent volcanic ashes from Southern Andes. Environ Chem 8(3):236–247

    Article  CAS  Google Scholar 

  • Ruggieri F, Fernandez-Turiel JL, Saavedra J, Gimeno D, Polancon E, Amigo A, Galindo G, Caselli A (2012) Contribution of volcanic ashes to the regional geochemical balance: the 2008 eruption of Chaiten volcano, Southern Chile. Sci Total Environ 425:75–88

    Article  CAS  Google Scholar 

  • Satake H, Kita Y, Hayashi H, Murata M (2007) Geochemical investigation around the Mozumi-Sukenobe fault survey tunnel. In: Ando M (ed) Geodynamics of atotsugawa fault system. Terrapub, Tokyo, pp 1–26

    Google Scholar 

  • Satsangi GS, Lakhani A, Khare P, Singh SP, Kumari KM, Srivastava SS (1998) Composition of rainwater at a semi-arid rural site in India. Atmos Environ 32(21):3783–3793

    Article  CAS  Google Scholar 

  • Satsangi GR, Lakhani A, Khare P, Singh SP, Kumari SS, Srivastava SS (2002) Measurements of major ion concentrations in settled coarse particles and aerosols at a semiarid rural site in India. Environ Int 28(1–2):1–7

    Article  CAS  Google Scholar 

  • Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water–rock interaction study. Environ Geol 40:1084–1087

    Article  CAS  Google Scholar 

  • Saxena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736

    CAS  Google Scholar 

  • Scaillet B, Macdonald R (2004) Fluorite stability in silicic magmas. Contrib Mineral Petrol 147(3):319–329

    Article  CAS  Google Scholar 

  • Schwinn G, Markl G (2005) REE systematic in hydrothermal fluorite. Chem Geol 216(3–4):225–248

    Article  CAS  Google Scholar 

  • Serrano MJG, Sanz LFA, Nordstrom DK (2000) REE speciation in low temperature in low-temperature acidic waters and the competitive effects of aluminium. Chem Geol 165(3–4):167–180

    Article  Google Scholar 

  • Shah MT, Danishwar S (2003) Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province, Pakistan. Environ Geochem Health 25(4):475–481

    Article  Google Scholar 

  • Sharma SC (1999) Report of the Central Groundwater Water Board of India, Ministry of Water Resources, Government of India, New Delhi

    Google Scholar 

  • Singh SP, Khare P, Satsangi GS, Lakhani A, Kumari SS, Srivastava SS (2001) Rainwater composition at a regional representative site of a semi-arid region of India. Water Air Soil Poll 127(1):93–108

    Article  CAS  Google Scholar 

  • Singh CK, Kumari R, Singh RP, Shashtri S, Kamal V, Mukherjee S (2011) Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bull Environ Contam Toxicol 86(2):152–158

    Article  CAS  Google Scholar 

  • Singh CK, Kumari R, Singh N, Mallick J, Mukherjee S (2013) Fluoride enrichment in aquifers of the Thar Desert: controlling factors and its geochemical modeling. Hydrol Process 27(17):2462–2474

    Article  Google Scholar 

  • Skjelkvåle BL (1994) Water chemistry in areas with high deposition of fluoride. Sci Total Environ 152(2):105–112

    Article  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwater from La Pampa, Argentina. Appl Geochem 17(3):259–284

    Article  CAS  Google Scholar 

  • Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18(9):1453–1477

    Article  CAS  Google Scholar 

  • Smyshlyaev SI, Edeleva NP (1962) Determination of the solubility of minerals; I, solubility product of fluorite. lzv Vysshikh Uchebn Zavedeni iKhim iKhim Tekhnologiya 5:871–874

    CAS  Google Scholar 

  • Sreedevi PD, Ahmed S, Made B, Ledoux E, Gandolfi JM (2006) Association of hydrogeological factors in temporal variations of fluoride concentration in crystalline aquifer in India. Environ Geol 50(1):1–11

    Article  CAS  Google Scholar 

  • Streat M, Hellgardt K, Newton NLR (2008) Hydrous ferric oxide as an adsorbentin water treatment. Part 3: batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf Environ Prot 86(1):21–30

    Article  CAS  Google Scholar 

  • Su C, Wang Y, Xie X, Li J (2013) Aqueous geochemistry of high fluoride groundwater in Datong Basin, Northern China. J Geochem Explor 135:79–92

    Article  CAS  Google Scholar 

  • Subba Rao N, Devadas DJ (2003) Fluoride incidence in groundwater in an area of Peninsula India. Environ Geol 45(2):243–251

    Article  CAS  Google Scholar 

  • Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367(1):182–190

    Article  CAS  Google Scholar 

  • Tirumalesh K, Shivanna K, Jalihal AA (2007) Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka, India. Hydrogeol J 15(3):589–598

    Article  CAS  Google Scholar 

  • Wang W, Li R, Tan J, Luo K, Yang L, Li H, Li Y (2002) Adsorption and leaching of fluoride in soils of China. Fluoride 35(2):122–129

    CAS  Google Scholar 

  • Wang YX, Shvartsev SL, Su CL (2009) Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, Northern China. Appl Geochem 24(4):641–649

    Article  CAS  Google Scholar 

  • Watts NL (1980) Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology 27(6):661–686

    Article  Google Scholar 

  • Wedepohl KH (1978) Handbook of geochemistry. Springer, Heidelberg

    Google Scholar 

  • Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y (2013) Arsenic, Fluoride and Iodine in groundwater of China. J Geochem. Explor 135:1–21

    Google Scholar 

  • WHO (1994) Fluoride and oral health. Geneva: WHO Tech Rep Ser 846

    Google Scholar 

  • Xiaoging X, Binbin W (2014) Geochemical process of fluorine in soil. Chin J Geochem 33:277–279

    Article  CAS  Google Scholar 

  • Xie XJ, Wang YX, Su CL, Duan MY (2013) Effects of recharge and discharge on delta H - 2 and delta O-18 composition and chloride concentration of high arsenic/fluoride groundwater from the Dalong Basin, Northern China. Water Environ Res 85:113–123

    Google Scholar 

  • Xu L, Xing H (1995) Fluorine in the soil. Soil 27:191–194

    CAS  Google Scholar 

  • Zhang H, Su B, Liu P, Zhang W (2007) Experimental study of fluorine transport rules in unsaturated stratified soil. J China Univ Mining Tech 17(3):382–386

    Article  CAS  Google Scholar 

  • Zhang W, Zhou L, Tang H, Li H, Song W, Chen Z (2015) Modelling geochemical factors controlling fluoride concentration in groundwater. Arab J Geosci 8(11):9133–9147

    Article  CAS  Google Scholar 

  • Zhu L, Zhang HH, Xia B, Xu DR (2007) Total fluoride in Guangdong soil profiles, China: spatial distribution and vertical variation. Environ Int 33(3):302–308

    Article  CAS  Google Scholar 

  • Zhuang J, Yu G (2002) Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 49(6):619–628

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataraman Sivasankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sivasankar, V., Darchen, A., Omine, K., Sakthivel, R. (2016). Fluoride: A World Ubiquitous Compound, Its Chemistry, and Ways of Contamination. In: Sivasankar, V. (eds) Surface Modified Carbons as Scavengers for Fluoride from Water. Springer, Cham. https://doi.org/10.1007/978-3-319-40686-2_2

Download citation

Publish with us

Policies and ethics