Advertisement

Global Attractors for Discontinuous Dynamical Systems with Multi-valued Impulsive Perturbations

  • Oleksiy V. Kapustyan
  • Iryna V. Romaniuk
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 69)

Abstract

In this work, we consider impulsive infinite-dimensional dynamical systems generated by parabolic equations with continuous bounded right-hand side and with impulsive multi-valued perturbations. Moments of impulses are not fixed and defined by moments of intersection of solutions with some subset of the phase space. We find an explicit formula in the case \(\varepsilon =0\) and prove that for sufficiently small value of the parameter \(\varepsilon >0\) the corresponding nonlinear system also has a global attractor.

References

  1. 1.
    Bonotto, E.M.: Flows of characteristic 0+ in impulsive semidynamical systems. J. Math. Anal. Appl. 332, 81–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonotto, E.M., Demuner, D.P.: Attractors of impulsive dissipative semidynamical systems. Bull. Sci. Math. 137, 617–642 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonotto, E.M., Bortolan, M.C., Carvalho, A.N., Czaja, R.: Global attractors for impulsive dynamical systems - a precompact approach. J. Diff. Eqn. 259, 2602–2625 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ciesielski, K.: On stability in impulsive dynamical systems. Bull. Pol. Acad. Sci. Math. 52, 81–91 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chepyzhov, V. V., Vishik, M. I.: Attractors of equations of mathematical physics, AMS 49, 363 (2002)Google Scholar
  6. 6.
    Iovane, G., Kapustyan, O.V., Valero, J.: Asymptotic behaviour of reaction-diffusion equations with non-damped impulsive effects. Nonlinear Anal. 68, 2516–2530 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kapustyan, A.V., Mel’nik, V.S.: On global attractors of multivalued semidynamical systems and their approximations. Doklady Academii Nauk. 366(4), 445–448 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kapustyan, O.V., Melnik, V.S., Valero, J.: A weak attractor and properties of solutions for the three-dimensional Benard problem. Discret. Contin. Dyn. Syst. 18, 449–481 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Pullback attractors for some class of extremal solutions of 3D Navier-Stokes system. J. Math. Anal. Appl. 373, 535–547 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kapustyan, O.V., Perestyuk, M.O.: Existence of global attractors for impulsive dynamical systems, Reports of the NAS of Ukraine. Mathematics 12, 13–18 (2015)Google Scholar
  11. 11.
    Kapustyan, O.V., Perestyuk, M.O.: Global attractors for impulsive infinite-dimensional systems. Ukr. Math. J. 68(4), 517–528 (2016)Google Scholar
  12. 12.
    Kasyanov, P.O.: Multivalued dynamics of solutions of autonomous differential-operator inclusion with pseudomonotone nonlinearity. Cybern. Syst. Anal. 47(5), 800–811 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kaul, S.K.: On impulsive semidynamical systems. J. Math. Anal. Appl. 150(1), 120–128 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaul, S.K.: Stability and asymptotic stability in impulsive semidynamical systems. J. Appl. Math. Stoch. Anal. 7(4), 509–523 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Melnik, V.S., Valero, J.: On attractors of multi-valued semi-flows and differential inclusions. Set-Valued Anal. 6, 83–111 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Perestjuk, Y.M.: Discontinuous oscillations in an impulsive system. J. Math. Sci. 194(4), 404–413 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Perestyuk, M.O., Kapustyan, O.V.: Long-time behavior of evolution inclusion with non-damped impulsive effects. Mem. Differ. Equ. Math. Phys. 56, 89–113 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Rozko, V.: Stability in terms of Lyapunov of discontinuous dynamic systems. Differ. Uravn. 11(6), 1005–1012 (1975)MathSciNetGoogle Scholar
  19. 19.
    Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin (1988)Google Scholar
  21. 21.
    Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Long-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis. Springer, Berlin (2012)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Institute for Applied System AnalysisNational Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine
  3. 3.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations