The Optimal Control Problem with Minimum Energy for One Nonlocal Distributed System

  • Olena A. KapustianEmail author
  • Oleg K. Mazur
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 69)


We obtain sufficient conditions for resolvability of optimal control problem with minimum energy on the solutions of parabolic equation with nonlocal boundary conditions in a circular sector.


  1. 1.
    Krasovskiy, N.N.: Theory of Control of Motion. Nauka, Moscow (1968)Google Scholar
  2. 2.
    Egorov, A.I.: Optimal control in heat and diffusion processes. Nauka, Moscow (1978)Google Scholar
  3. 3.
    Ivanenko, V.I., Melnik, V.S.: Variational Methods in Control Problems for Systems with Distributed Parameters. Naukova Dumka, Kyiv (1988)Google Scholar
  4. 4.
    Nakonechnyi, O.G.: Optimal Control and Estimation for Partial Differential Equations. Vydavnytstvo Kyivskogo universitetu, Kyiv (2004)Google Scholar
  5. 5.
    Moiseev, E.I., Ambarzumyan, V.E.: About resolvability of non-local boundary-value problem with equality of fluxes. Differential equations. 46(5), 718–725 (2010)Google Scholar
  6. 6.
    Kapustyan, V.O., Kapustian, O.A., Mazur, O.K.: Problem of optimal control for the Poisson equation with nonlocal boundary conditions. Journal of Mathematical Sciences 201(3), 325–334 (2014)Google Scholar
  7. 7.
    Watson, G.N.: Theory of Bessel Functions. University Press, Cambridge (1945)Google Scholar
  8. 8.
    Scherberg, M.G.: The degree of convergence of a series of Bessel functions. Trans. Amer. Math. Soc. 35, 172–183 (1933)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Institute for Applied System AnalysisNational Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine
  3. 3.National University of Food TechnologiesKyivUkraine

Personalised recommendations