Skip to main content

Hopfield Network with Interneuronal Connections Based on Memristor Bridges

  • Conference paper
  • First Online:
Book cover Advances in Neural Networks – ISNN 2016 (ISNN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9719))

Included in the following conference series:

Abstract

A scheme for the Hopfield associative memory hardware implementation with interneuronal connections through bridges using memristors is proposed. The Hopfield associative memory is realized as a network of coupled phase oscillators. It is shown how to use the CMOS transistor switches to control the memristance (memristor resistance) value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua, L.: Memristor – the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. University of Tyumen. http://www.utmn.ru/presse/teleradiokanal-evrazion/videonovosti-tyumgu/89986/

  4. Pershin, Y., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    Article  Google Scholar 

  5. Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phys. Lett. A 375, 1661–1665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, B., Chen, Y., Wysocki, B., Huang, T.: Reconfigurable neuromorphic computing system with memristor-based synapse design. Neural Process. Lett. 41, 159–167 (2015)

    Article  Google Scholar 

  7. Nishikawa, T., Hoppensteadt, F.C., Lai, Y.-C.: Oscillatory associative memory network with perfect retrieval. Physica D 197, 134–148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)

    Article  MATH  Google Scholar 

  9. Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics and design applications. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 485–490 (2009)

    Google Scholar 

  10. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nanoletters 10, 1297–1301 (2010)

    Article  Google Scholar 

  11. Kavehei, O.: Memristive devices and circuits for computing, memory, and neuromorphic applications. Ph.D. thesis, The University of Adelaida, Australia (2011)

    Google Scholar 

  12. Lehtonen, E.: Memristive Computing. University of Turku, Finland (2012)

    Google Scholar 

  13. Wu, Q., Liu, B., Chen, Y., Li, H., Chen, Q., Qiu, Q.: Bio-inspired computing with resistive memories – models, architectures and applications. In: Proceedings of 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 834–837 (2014)

    Google Scholar 

  14. Tarkov, M.S.: Mapping weight matrix of a neural network’s layer onto memristor crossbar. Opt. Mem. Neural Netw. (Inf. Opt.) 24, 109–115 (2015)

    Article  Google Scholar 

  15. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge-based artificial neural weighting circuit. In: Adamatzky, A., Chua, L.O. (eds.) Memristor Networks, pp. 249–266. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  16. LTSPICE IV User Manual. http://ecee.colorado.edu/~mathys/ecen1400/pdf/scad3.pdf

  17. Wagner, P.: The LTspice2Matlab Function. http://www.mathworks.com/matlabcentral/fileexchange/23394-fast-import-of-compressed-binary-raw-files-created-with-ltspice-circuit-simulator

  18. Dorran, D.: The RunLTspice Function. https://dadorran.wordpress.com/tag/run-ltspice-matlab/

  19. Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18, 210–214 (2009)

    Google Scholar 

  20. Falatic, M.: Memristor Simulation with LTspice. http://www.falatic.com/index.php/69

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Tarkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tarkov, M.S. (2016). Hopfield Network with Interneuronal Connections Based on Memristor Bridges. In: Cheng, L., Liu, Q., Ronzhin, A. (eds) Advances in Neural Networks – ISNN 2016. ISNN 2016. Lecture Notes in Computer Science(), vol 9719. Springer, Cham. https://doi.org/10.1007/978-3-319-40663-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40663-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40662-6

  • Online ISBN: 978-3-319-40663-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics