Advertisement

Imaging Genetics with Partial Least Squares for Mixed-Data Types (MiMoPLS)

  • Derek BeatonEmail author
  • Michael Kriegsman
  • ADNI
  • Joseph Dunlop
  • Francesca M. Filbey
  • Hervé Abdi
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)

Abstract

“Imaging genetics” studies the genetic contributions to brain structure and function by finding correspondence between genetic data—such as single nucleotide polymorphisms (SNPs)—and neuroimaging data—such as diffusion tensor imaging (DTI). However, genetic and neuroimaging data are heterogenous data types, where neuroimaging data are quantitative and genetic data are (usually) categorical. So far, methods used in imaging genetics treat all data as quantitative, and this sometimes requires unrealistic assumptions about the nature of genetic data. In this article we present a new formulation of Partial Least Squares Correlation (PLSC)—called Mixed-modality Partial Least Squares (MiMoPLS)—specifically tailored for heterogeneous (mixed-) data types. MiMoPLS integrates features of PLSC and Correspondence Analysis (CA) by using special properties of quantitative data and Multiple Correspondence Analysis (MCA). We illustrate MiMoPLS with an example data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with DTI and SNPs.

Keywords

Imaging genetics Partial least squares Alzheimer disease (Multiple) Correspondence analysis Burt’s stripe SNPs Heterogenuous data 

Notes

Acknowledgements

DB is currently supported via training grant by the NIH and National Institute on Drug Abuse (F31DA035039).

FMF is currently supported by the NIH and National Institute on Drug Abuse (R01DA030344). HA would like to acknowledge the support of an EURIAS fellowship at the Paris Institute for Advanced Studies (France), with the support of the European Union’s 7th Framework Program for research, and from a funding from the French State managed by the “Agence Nationale de la Recherche (program: Investissements d’avenir, ANR-11-LABX-0027-01 Labex RFIEA+).” ADNI: Data collection and sharing for this project was funded by the ADNI (NIH Grant U01 AG024904) and DOD ADNI (W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare;; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

References

  1. Abdi, H.: Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In: Salkind, N. (ed.) Encyclopedia of Measurement and Statistics, pp. 907–912. Sage, Thousand Oaks (2007)Google Scholar
  2. Abdi, H., Béra, M.: Correspondence analysis. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Networks and Mining, pp. 275–284. Springer, New York (2014)Google Scholar
  3. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev.: Comput. Stat. 2, 433–459 (2010a)Google Scholar
  4. Abdi, H., Williams, L.J.: Correspondence analysis. In: Salkind, N. (ed.) Encyclopedia of Research Design, pp. 267–278. Sage, Thousand Oaks (2010b)Google Scholar
  5. Abdi, H., Williams, L.J.: Partial least squares methods: partial least squares correlation and partial least square regression. In: Reisfeld, B., Mayeno, A. (eds.) Methods in Molecular Biology: Computational Toxicology, pp. 549–579. Springer, New York (2013)Google Scholar
  6. Allen, G.I.: Sparse and Functional Principal Components Analysis (2013). arXiv preprint arXiv:1309.2895Google Scholar
  7. Beaton, D., Filbey, F.M., Abdi, H.: Integrating partial least squares correlation and correspondence analysis for nominal data. In: Abdi, H., Chin, W.W., Esposito Vinzi, V., Russolillo, G., Trinchera, L. (eds.) New Perspectives in Partial Least Squares and Related Methods, pp. 81–94. Springer, New York (2013)CrossRefGoogle Scholar
  8. Beaton, D., Dunlop, J., ADNI, Abdi, H.: Partial least squares-correspondence analysis: a framework to simultaneously analyze behavioral and genetic data. Psychol. Methods 20 (2016, in press)Google Scholar
  9. Bécue-Bertaut, M., Pagès, J.: Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data. Computat. Stat. Data Anal. 52, 3255–3268 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., Tanzi, R.E.: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17–23 (2007)CrossRefGoogle Scholar
  11. Bookstein, F.: Partial least squares: a dose–response model for measurement in the behavioral and brain sciences. Psycoloquy 5 (23), 1–10 (1994)Google Scholar
  12. Bretherton, C.S., Smith, C., Wallace, J.M.: An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992)CrossRefGoogle Scholar
  13. Cantor, R.M., Lange, K., Sinsheimer, J.S.: Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010)CrossRefGoogle Scholar
  14. De la Cruz, O., Holmes, S.P.: The duality diagram in data analysis: examples of modern applications. Ann. Appl. Stat. 5, 2266–2277 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Dray, S.: Analyzing a pair of tables: co-inertia analysis and duality diagrams. In: Blasius, J., Greenacre, M. (eds.) Visualization and Verbalization of Data, pp. 289–300. CRC Press, London (2014)Google Scholar
  16. Efron, B.: Bootstrap methods: another look at the Jackknife. Ann. Stat. 7, 1–26 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Escofier, B.: Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Les Cahiers de l’Analyse Des Données 4, 137–146 (1979)Google Scholar
  18. Escoufier, Y.: Operators related to a data matrix: a survey. In: Rizzi, A., Vichi, M. (eds.) COMPSTAT: 17th Symposium Proceedings in Computational Statistics, Rome, pp. 285–297. Physica Verlag, New York (2006)Google Scholar
  19. Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., …Campion, D.: APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907 (2012)Google Scholar
  20. Greenacre, M.J.: Theory and Applications of Correspondence Analysis. Academic, London (1984)zbMATHGoogle Scholar
  21. Greenacre, M.: Data doubling and fuzzy coding. In: Blasius, J., Greenacre, M. (eds.) Visualization and Verbalization of Data, pp. 239–253. CRC Press, London (2014)Google Scholar
  22. Hesterberg, T.: Bootstrap. Wiley Interdiscip. Rev.: Comput. Stat. 3, 497–526 (2011)Google Scholar
  23. Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H.: Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475 (2011)CrossRefGoogle Scholar
  24. Lebart, L., Morineau, A., Warwick, K.M.: Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices. Wiley, New York (1984)zbMATHGoogle Scholar
  25. Le Floch, E., Guillemot, V., Frouin, V., Pinel, P., Lalanne, C., Trinchera, L., …Duchesnay, É.: Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse partial least squares. NeuroImage 63, 11–24 (2012)CrossRefGoogle Scholar
  26. Liu, J., Calhoun, V.D.: A review of multivariate analyses in imaging genetics. Front. Neuroinform. 8, 29 (2014)Google Scholar
  27. Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N.I., Calhoun, V.: Combining f MRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum. Brain Mapp. 30, 241–255 (2009)CrossRefGoogle Scholar
  28. McIntosh, A.R., Bookstein, F.S., Haxby, J., Grady, C.: Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143–157 (1996)CrossRefGoogle Scholar
  29. Meda, S.A., Jagannathan, K., Gelernter, J., Calhoun, V.D., Liu, J., Stevens, M.C., Pearlson, G.D.: A pilot multivariate parallel ICA study to investigate differential linkage between neural networks and genetic profiles in schizophrenia. NeuroImage 53, 1007–1015 (2010)CrossRefGoogle Scholar
  30. Meyer-Lindenberg, A.: The future of f MRI and genetics research. NeuroImage 62, 1286–1292 (2012)CrossRefGoogle Scholar
  31. Mitteroecker, P., Cheverud, J.M., Pavlicev, M.: Multivariate analysis of genotype–phenotype association. Genetics 202 (4), 1345–1363 (2016)CrossRefGoogle Scholar
  32. Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., …Mori, S.: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43, 447–457 (2008)CrossRefGoogle Scholar
  33. Sheng, J., Kim, S., Yan, J., Moore, J., Saykin, A., Shen, L.: Data synthesis and method evaluation for brain imaging genetics. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, pp. 1202–1205 (2014)Google Scholar
  34. Takane, Y., Hwang, H.: Regularized multiple correspondence analysis. In: Greenacre, M., Blasius, J. (eds.) Multiple Correspondence Analysis and Related Methods, pp. 259–279. Academic, London (2006)CrossRefGoogle Scholar
  35. Thompson, P.M., Martin, N.G., Wright, M.J.: Imaging genomics. Curr. Opin. Neurol. 23, 368–373 (2010)Google Scholar
  36. Tishler, A., Dvir, D., Shenhar, A., Lipovetsky, S.: Identifying critical success factors in defense development projects: a multivariate analysis. Technol. Forecast. Soc. Change 51, 151–171 (1996)CrossRefGoogle Scholar
  37. Tucker, L.R.: An inter-battery method of factor analysis. Psychometrika 23, 111–136 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Visscher, P.M., Brown, M.A., McCarthy, M.I., Yang, J.: Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012)CrossRefGoogle Scholar
  39. Vounou, M., Nichols, T.E., Montana, G.: Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. NeuroImage 53, 1147–1159 (2010)CrossRefGoogle Scholar
  40. Wegelin, J.A.: A survey of partial least squares (PLS) methods, with emphasis on the two-block case. Technical report, University of Washington (2000)Google Scholar
  41. Weiner, M.P., Hudson, T.J.: Introduction to SNPs: discovery of markers for disease. BioTechniques 10 (4–7), 12–13 (2002)Google Scholar
  42. Zapala, M.A., Schork, N.J.: Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. 103, 19430–19435 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Derek Beaton
    • 1
    Email author
  • Michael Kriegsman
    • 1
  • ADNI
    • 1
  • Joseph Dunlop
    • 2
  • Francesca M. Filbey
    • 3
  • Hervé Abdi
    • 1
  1. 1.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA
  2. 2.SAS Institute Inc.CaryUSA
  3. 3.Center for BrainHealth and School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA

Personalised recommendations