Skip to main content

Imaging Genetics with Partial Least Squares for Mixed-Data Types (MiMoPLS)

  • Conference paper
  • First Online:
The Multiple Facets of Partial Least Squares and Related Methods (PLS 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 173))

Included in the following conference series:

Abstract

“Imaging genetics” studies the genetic contributions to brain structure and function by finding correspondence between genetic data—such as single nucleotide polymorphisms (SNPs)—and neuroimaging data—such as diffusion tensor imaging (DTI). However, genetic and neuroimaging data are heterogenous data types, where neuroimaging data are quantitative and genetic data are (usually) categorical. So far, methods used in imaging genetics treat all data as quantitative, and this sometimes requires unrealistic assumptions about the nature of genetic data. In this article we present a new formulation of Partial Least Squares Correlation (PLSC)—called Mixed-modality Partial Least Squares (MiMoPLS)—specifically tailored for heterogeneous (mixed-) data types. MiMoPLS integrates features of PLSC and Correspondence Analysis (CA) by using special properties of quantitative data and Multiple Correspondence Analysis (MCA). We illustrate MiMoPLS with an example data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with DTI and SNPs.

for the Alzheimer’s Disease Neuroimaging Initiative

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi, H.: Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In: Salkind, N. (ed.) Encyclopedia of Measurement and Statistics, pp. 907–912. Sage, Thousand Oaks (2007)

    Google Scholar 

  • Abdi, H., Béra, M.: Correspondence analysis. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Networks and Mining, pp. 275–284. Springer, New York (2014)

    Google Scholar 

  • Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev.: Comput. Stat. 2, 433–459 (2010a)

    Google Scholar 

  • Abdi, H., Williams, L.J.: Correspondence analysis. In: Salkind, N. (ed.) Encyclopedia of Research Design, pp. 267–278. Sage, Thousand Oaks (2010b)

    Google Scholar 

  • Abdi, H., Williams, L.J.: Partial least squares methods: partial least squares correlation and partial least square regression. In: Reisfeld, B., Mayeno, A. (eds.) Methods in Molecular Biology: Computational Toxicology, pp. 549–579. Springer, New York (2013)

    Google Scholar 

  • Allen, G.I.: Sparse and Functional Principal Components Analysis (2013). arXiv preprint arXiv:1309.2895

    Google Scholar 

  • Beaton, D., Filbey, F.M., Abdi, H.: Integrating partial least squares correlation and correspondence analysis for nominal data. In: Abdi, H., Chin, W.W., Esposito Vinzi, V., Russolillo, G., Trinchera, L. (eds.) New Perspectives in Partial Least Squares and Related Methods, pp. 81–94. Springer, New York (2013)

    Chapter  Google Scholar 

  • Beaton, D., Dunlop, J., ADNI, Abdi, H.: Partial least squares-correspondence analysis: a framework to simultaneously analyze behavioral and genetic data. Psychol. Methods 20 (2016, in press)

    Google Scholar 

  • Bécue-Bertaut, M., Pagès, J.: Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data. Computat. Stat. Data Anal. 52, 3255–3268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., Tanzi, R.E.: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17–23 (2007)

    Article  Google Scholar 

  • Bookstein, F.: Partial least squares: a dose–response model for measurement in the behavioral and brain sciences. Psycoloquy 5 (23), 1–10 (1994)

    Google Scholar 

  • Bretherton, C.S., Smith, C., Wallace, J.M.: An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992)

    Article  Google Scholar 

  • Cantor, R.M., Lange, K., Sinsheimer, J.S.: Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010)

    Article  Google Scholar 

  • De la Cruz, O., Holmes, S.P.: The duality diagram in data analysis: examples of modern applications. Ann. Appl. Stat. 5, 2266–2277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Dray, S.: Analyzing a pair of tables: co-inertia analysis and duality diagrams. In: Blasius, J., Greenacre, M. (eds.) Visualization and Verbalization of Data, pp. 289–300. CRC Press, London (2014)

    Google Scholar 

  • Efron, B.: Bootstrap methods: another look at the Jackknife. Ann. Stat. 7, 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Escofier, B.: Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Les Cahiers de l’Analyse Des Données 4, 137–146 (1979)

    Google Scholar 

  • Escoufier, Y.: Operators related to a data matrix: a survey. In: Rizzi, A., Vichi, M. (eds.) COMPSTAT: 17th Symposium Proceedings in Computational Statistics, Rome, pp. 285–297. Physica Verlag, New York (2006)

    Google Scholar 

  • Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., …Campion, D.: APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907 (2012)

    Google Scholar 

  • Greenacre, M.J.: Theory and Applications of Correspondence Analysis. Academic, London (1984)

    MATH  Google Scholar 

  • Greenacre, M.: Data doubling and fuzzy coding. In: Blasius, J., Greenacre, M. (eds.) Visualization and Verbalization of Data, pp. 239–253. CRC Press, London (2014)

    Google Scholar 

  • Hesterberg, T.: Bootstrap. Wiley Interdiscip. Rev.: Comput. Stat. 3, 497–526 (2011)

    Google Scholar 

  • Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H.: Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475 (2011)

    Article  Google Scholar 

  • Lebart, L., Morineau, A., Warwick, K.M.: Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices. Wiley, New York (1984)

    MATH  Google Scholar 

  • Le Floch, E., Guillemot, V., Frouin, V., Pinel, P., Lalanne, C., Trinchera, L., …Duchesnay, É.: Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse partial least squares. NeuroImage 63, 11–24 (2012)

    Article  Google Scholar 

  • Liu, J., Calhoun, V.D.: A review of multivariate analyses in imaging genetics. Front. Neuroinform. 8, 29 (2014)

    Google Scholar 

  • Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N.I., Calhoun, V.: Combining f MRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum. Brain Mapp. 30, 241–255 (2009)

    Article  Google Scholar 

  • McIntosh, A.R., Bookstein, F.S., Haxby, J., Grady, C.: Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143–157 (1996)

    Article  Google Scholar 

  • Meda, S.A., Jagannathan, K., Gelernter, J., Calhoun, V.D., Liu, J., Stevens, M.C., Pearlson, G.D.: A pilot multivariate parallel ICA study to investigate differential linkage between neural networks and genetic profiles in schizophrenia. NeuroImage 53, 1007–1015 (2010)

    Article  Google Scholar 

  • Meyer-Lindenberg, A.: The future of f MRI and genetics research. NeuroImage 62, 1286–1292 (2012)

    Article  Google Scholar 

  • Mitteroecker, P., Cheverud, J.M., Pavlicev, M.: Multivariate analysis of genotype–phenotype association. Genetics 202 (4), 1345–1363 (2016)

    Article  Google Scholar 

  • Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., …Mori, S.: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43, 447–457 (2008)

    Article  Google Scholar 

  • Sheng, J., Kim, S., Yan, J., Moore, J., Saykin, A., Shen, L.: Data synthesis and method evaluation for brain imaging genetics. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, pp. 1202–1205 (2014)

    Google Scholar 

  • Takane, Y., Hwang, H.: Regularized multiple correspondence analysis. In: Greenacre, M., Blasius, J. (eds.) Multiple Correspondence Analysis and Related Methods, pp. 259–279. Academic, London (2006)

    Chapter  Google Scholar 

  • Thompson, P.M., Martin, N.G., Wright, M.J.: Imaging genomics. Curr. Opin. Neurol. 23, 368–373 (2010)

    Google Scholar 

  • Tishler, A., Dvir, D., Shenhar, A., Lipovetsky, S.: Identifying critical success factors in defense development projects: a multivariate analysis. Technol. Forecast. Soc. Change 51, 151–171 (1996)

    Article  Google Scholar 

  • Tucker, L.R.: An inter-battery method of factor analysis. Psychometrika 23, 111–136 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  • Visscher, P.M., Brown, M.A., McCarthy, M.I., Yang, J.: Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012)

    Article  Google Scholar 

  • Vounou, M., Nichols, T.E., Montana, G.: Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. NeuroImage 53, 1147–1159 (2010)

    Article  Google Scholar 

  • Wegelin, J.A.: A survey of partial least squares (PLS) methods, with emphasis on the two-block case. Technical report, University of Washington (2000)

    Google Scholar 

  • Weiner, M.P., Hudson, T.J.: Introduction to SNPs: discovery of markers for disease. BioTechniques 10 (4–7), 12–13 (2002)

    Google Scholar 

  • Zapala, M.A., Schork, N.J.: Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. 103, 19430–19435 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

DB is currently supported via training grant by the NIH and National Institute on Drug Abuse (F31DA035039).

FMF is currently supported by the NIH and National Institute on Drug Abuse (R01DA030344). HA would like to acknowledge the support of an EURIAS fellowship at the Paris Institute for Advanced Studies (France), with the support of the European Union’s 7th Framework Program for research, and from a funding from the French State managed by the “Agence Nationale de la Recherche (program: Investissements d’avenir, ANR-11-LABX-0027-01 Labex RFIEA+).” ADNI: Data collection and sharing for this project was funded by the ADNI (NIH Grant U01 AG024904) and DOD ADNI (W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare;; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Derek Beaton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Beaton, D., Kriegsman, M., ADNI., Dunlop, J., Filbey, F.M., Abdi, H. (2016). Imaging Genetics with Partial Least Squares for Mixed-Data Types (MiMoPLS). In: Abdi, H., Esposito Vinzi, V., Russolillo, G., Saporta, G., Trinchera, L. (eds) The Multiple Facets of Partial Least Squares and Related Methods. PLS 2014. Springer Proceedings in Mathematics & Statistics, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-319-40643-5_6

Download citation

Publish with us

Policies and ethics