Advertisement

Path Directions Incoherence in PLS Path Modeling: A Prediction-Oriented Solution

  • Pasquale DolceEmail author
  • Vincenzo Esposito Vinzi
  • Carlo Lauro
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)

Abstract

PLS-PM presents some inconsistencies in terms of coherence with the direction of the relationships specified in the path diagram (i.e., the path directions). The PLS-PM iterative algorithm analyzes interdependence among blocks and misses to distinguish explicitly between dependent and explanatory blocks in the structural model. This inconsistency of PLS-PM is illustrated using the simple two-blocks model. For the case of more than two blocks of variables, it is necessary to have a close look at the different criteria optimized by PLS-PM to show this issue. In general, the role of latent variables in the structural model depends on the way the outer weights are calculated. A recently proposed method, called Non-Symmetrical Component-based Path Modeling, which is based on the optimization of a redundancy-related criterion in a multi-block framework, respects the direction of the relationships specified in the structural model. In order to assess the quality of the model, we provide a new goodness-of-fit index based on redundancy criterion and prediction capability. Furthermore, we provide a procedure to address the problem of multicollinearity within blocks of variables.

Keywords

PLS Path Modeling Predictive Direction Redundancy Index 

References

  1. Amato, S., Esposito, V.V., Tenenhaus, M.: A global goodness-of-fit index for PLS structural equation modeling. Technical report, HEC School of Management, France (2005)Google Scholar
  2. Bollen, K.A.: Structural Equations with Latent Variables. Wiley, New York (1989)CrossRefzbMATHGoogle Scholar
  3. Chin, W.W.: The partial least squares approach for structural equation modeling. In: Marcoulides, G. (ed.) Modern Methods for Business Research, pp. 295–336. Lawrence Erlbaum Associates, London (1998)Google Scholar
  4. Dolce, P.: Component-based path modeling: open issues and methodological contributions, PhD thesis, Università degli Studi di Napoli “Federico II”, Italy (2015)Google Scholar
  5. Esposito Vinzi, V., Russolillo, G.: Partial least squares algorithms and methods. WIREs Comput. Stat. 5, 1–19 (2013)CrossRefGoogle Scholar
  6. Esposito Vinzi, V., Russolillo, G., Trinchera, L.: A joint use of PLS regression and PLS path modelling for a data analysis approach to latent variable modelling. In: 57th Session of the International Statistical Institute (ISI), International Statistical Institute (ISI), Durban (Invited Paper Session) (2009)Google Scholar
  7. Geisser, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70, 320–328 (1975)CrossRefzbMATHGoogle Scholar
  8. Hair, J., Black, W., Babin, B., Anderson, R.: Multivariate Data Analysis. A Global Perspective. Pearson Education, Inc., Upper Saddle River (2010)Google Scholar
  9. Hanafi, M.: PLS path modeling: computation of latent variables with the estimation mode B. Comput. Stat. 22, 275–292 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Hotelling, H.: The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935)CrossRefGoogle Scholar
  11. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)CrossRefzbMATHGoogle Scholar
  12. Krämer, N.: Analysis of high-dimensional data with partial least squares and boosting. Phd thesis, Technische Universität Berlin, Berlin (2007)Google Scholar
  13. Lauro, N., D’Ambra, L.: Non symmetrical exploratory data analysis. Statistica Applicata 4 (4), 511–529 (1992)Google Scholar
  14. Lohmöller, J.: Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag, Heildelberg (1989)CrossRefzbMATHGoogle Scholar
  15. Rencher, A.: Multivariate Statistical Inference and Applications. Wiley Series in Probability and Statistics. Wiley, New York (1998)zbMATHGoogle Scholar
  16. Stewart, D., Love, W.: A general canonical correlation index. Psychol. Bull. 70 (3), 160–163 (1968)CrossRefGoogle Scholar
  17. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36 111–147 (1974)MathSciNetzbMATHGoogle Scholar
  18. Tenenhaus, A., Tenenhaus, M.: Regularized generalized canonical correlation analysis. Psychometrika 76, 257–284 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Tenenhaus, M., Esposito Vinzi, V., Chatelin, M., Lauro, C.: PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Vittadini, G., Minotti, S.C., Fattore, M., Lovaglio, P.G.: On the relationships among latent variables and residuals in PLS path modeling: the formative-reflective scheme. Comput. Stat. Data Anal. 51, 5828–5846 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Wold, H.: Model construction and evaluation when theoretical knowledge is scarce. In: Kmenta, J., Ramsey, J.B. (eds.) Evaluation of Econometric Models, pp. 47–74. NBER Books, Academic Press (1980)CrossRefGoogle Scholar
  22. Wold, H.: Soft modeling: the basic design and some extensions. In: Jöreskog, K., Wold, H. (eds.) Systems Under Indirect Observation, vol. 2, pp. 1–54. North-Holland, Amsterdam (1982)Google Scholar
  23. Wollenberg, A.L.: Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42, 207–219 (1977)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pasquale Dolce
    • 1
    Email author
  • Vincenzo Esposito Vinzi
    • 2
  • Carlo Lauro
    • 1
  1. 1.University of Naples “Federico II”NaplesItaly
  2. 2.ESSEC Business SchoolCergy Pontoise CedexFrance

Personalised recommendations