Advertisement

A New Bootstrap-Based Stopping Criterion in PLS Components Construction

  • Jérémy MagnanensiEmail author
  • Myriam Maumy-Bertrand
  • Nicolas Meyer
  • Frédéric Bertrand
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 173)

Abstract

We develop a new universal stopping criterion in components construction, in the sense that it is suitable both for Partial Least Squares Regressions (PLSR) and its extension to Generalized Linear Regressions (PLSGLR). This criterion is based on a bootstrap method and has to be computed algorithmically. It allows to test each successive components on a significant level α. In order to assess its performances and robustness with respect to different noise levels, we perform intensive datasets simulations, with a preset and known number of components to extract, both in the case N > P (N being the number of subjects and P the number of original predictors), and for datasets with N < P. We then use t-tests to compare the predictive performance of our approach to some others classical criteria. Our conclusion is that our criterion presents better performances, both in PLSR and PLS-Logistic Regressions (PLS-LR) frameworks.

Keywords

Partial least squares regressions (PLSR) Bootstrap Cross-validation Inference 

References

  1. Bastien, P., Vinzi, V.E., Tenenhaus, M.: PLS generalised linear regression. Comput. Stat. Data Anal. 48, 17–46 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bertrand, F., Magnanensi, J., Maumy-Bertrand, M., Meyer, N.: Partial least squares regression for generalized linear models. http://www-irma.u-strasbg.fr/~fbertrand/ (2014). Book of abstracts, User2014!, Los Angeles, p. 150
  3. Freedman, D.A.: Bootstrapping regression models. Ann. Stat. 9, 1218–1228 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Hastie, T., Tibshirani, R., Friedman, J.J.H.: The Elements of Statistical Learning, vol. 1, 2nd edn. Springer, New York (2009)Google Scholar
  5. Höskuldsson, A.: PLS regression methods. J. Chemom. 2, 211–228 (1988)CrossRefGoogle Scholar
  6. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc (1995)Google Scholar
  7. Krämer, N., Sugiyama, M.: The Degrees of Freedom of Partial Least Squares Regression. J. Am. Stat. Assoc. 106, 697–705 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Tenenhaus, M.: La Régression PLS, Théorie et pratique. Editions Technip, Paris (1998)zbMATHGoogle Scholar
  9. Welch, B.L.: The generalization of student’s problem when several different population variances are involved. Biometrika 34, 28–35 (1947)MathSciNetzbMATHGoogle Scholar
  10. Wold, S., Martens, H., Wold, H.: The multivariate calibration problem in chemistry solved by the PLS method. In: Matrix Pencils, pp. 286–293. Springer, Berlin/New York (1983)Google Scholar
  11. Wold, S., Ruhe, A., Wold, H., Dunn, III, W.J.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci Stat. Comput. 5, 735–743 (1984)Google Scholar
  12. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58 (2), 109–130 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jérémy Magnanensi
    • 1
    • 2
    Email author
  • Myriam Maumy-Bertrand
    • 3
  • Nicolas Meyer
    • 4
  • Frédéric Bertrand
    • 3
  1. 1.Institut de Recherche Mathématique Avancée, UMR 7501, LabEx IRMIAUniversité de Strasbourg et CNRSStrasbourg CedexFrance
  2. 2.Laboratoire de Biostatistique et Informatique Médicale, Faculté de Médecine, EA3430Université de StrasbourgStrasbourg CedexFrance
  3. 3.Institut de Recherche Mathématique Avancée, UMR 7501Université de Strasbourg et CNRSStrasbourg CedexFrance
  4. 4.Laboratoire de Biostatistique et Informatique Médicale, Faculté de Médecine, EA3430Université de StrasbourgStrasbourg CedexFrance

Personalised recommendations